

©1986, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

PREFACE

The AT&T UNIX System V User's Manual is a two-volume
reference manual that describes the operating system capabilities of
the AT&T UNIX* pc. It provides the UNIX programmer or
operating system user with an overview of this implementation and
details of commands, subroutines, and other facilities.

This issue of these manuals document version 3.5 of the UNIX PC
software.

The Programmer's Manual describes general purpose UNIX
commands and programs. This manual is further subdivided as
follows:

Section 1
Section 2
Section 3
Section 4
Section 5

Commands and Application Programs
System Calls
Subroutines
File Formats
Miscellaneous Facilities

The Administrator's Manual describes commands and facilities that
are used for administrative maintenance of the UNIX system. This
manual is further divided as follows:

Section 1M
Section 7
CURSES

System Maintenance Commands
Special Files
Curses/terminfo Programmer's Guide

How to Use These Manuals

The Table of Contents in each manual lists the commands and
other facilities in alphabetical order along with brief d~finitions.
Once you have identified a command by the definition, proceed to
that section number in the manual. If you are not familiar with
the UNIX system commands and facilities, refer to the Permuted
Index.

The Programmer's Manual and the Administrator's Manual each
contain a Permuted Index, which is an alphabetical listing of the

* UNIX is a registered trademark of AT&T

- 1 -

Preface

contents grouped by key words. Locate the topic for which you
seek information in the middle column of the index, then look to
the left column for amplifying information and to the right column
for the section number. Proceed to that section number for a full
description of the topic.

Version 3.5 UNIX software passes SVVS for System V Release 2.
The differences between Version 3.5 for the UNIX PC and System
V Release 2 are summarized below.

Section 1M:

acct(1M)

acctcms(1M)

acctcon(1M)

acctmerg(1M)

acctprc(lM)

acctsh(1M)

bdblk(lM)

brc(lM)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 2 -

ckeckall(lM)

cpset(lM)

crash(lM)

dcopy(lM)

d£skusg(lM)

dismount(lM)

errdead(1M)

errdemon(lM)

errp~lM)

errstop(lM)

filesave(lM)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 3 -

Preface

fuser(lM)

fwtmp(lM)

£v(lM)

£nstall(lM)

Iddrv(lM)

I£nk(lM)

masterupd(lM)

mkboot(lM)

mvd£r(lM)

nscloop(lM)

nscmon(1M)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 4 -

profiler(1M)

pwck(1M)

qasurvey(1M)

rboot(1M)

rc(1M)

ru n a c c t(1M)

sadp(1M)

sar(1M)

sfont(1M)

st(1M)

stgetty(1M)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5. The command rc(lM) is a
subset of brc(1M).

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 5 -

Preface

sysdefs(lM)

tic(lM)

uucico(lM)

vpmsave(lM)

vpmset(lM)

x25pvc(lM)

Section 7:

acu(7)

drivers(7)

escape(7)

kbd(7)

ktune(7)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not documented (but IS

available) on System V Release 2, and IS

available on the UNIX PC for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC

- 6 -

nc(7)

nsc(7)

phone(7)

phonedvr(7)

prj(7)

st(7)

stermio(7)

sxt(7)

trace(7)

vpm(7)

window(7)

Preface

for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

- 7 -

Preface

x25(7)

Section 8:

mk(8)

rje(8)

Section 1:

acctom(l)

at(l)

bs(l)

calendar(I)

cat(l)

cc(l)

cfont(l)

clear{l)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The -v, -t, and -e options are not
available on the UNIX PC Version 3.5.

The -T, -G, and -# options are not
available in System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC

- 8 -

cpio(1)

ctrace(1)

cu(1)

d£ff(1)

dircmp(1)

dump(1)

ed(1)

efi(1)

eqn(1)

f77(1)

fc(1)

find(1)

Preface

for Version 3.5.

The K, R, 0, J, and x options are not
available in System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - n option is not available on the UNIX
PC Version 3.5.

The -I, -r, -s,-D, and -c options are not
available on the UNIX PC Version 3.5.

The - wn option is not available on the
UNIX PC Version 3.5.

The -g, -c, -p, and -u options are not
available on the UNIX PC Version 3.5.

The - p string option is not available on the
UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - T option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

The -inum option is not available on the
UNIX PC Version 3.5.

- 9 -

Preface

fspl£t(l)

gdev(l)

ged(l)

get(l)

graph(l)

graph£cs(1)

greek(l)

grep(l)

gut£l(l)

head(l)

hp£o(l)

ksh(l)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - w option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The -i, -e, and -f options are not available
on the UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

- 10 -

Id(1)

l£nt(1)

Is(1)

mach£d(1)

ma£Ix(1)

message(1)

more(1)

news(1)

nscstat(1)

nsctorje(1)

nusend(l)

path(1)

Preface

The -z, -Z, -T, and -F options are not
available in System V Release 2.

The - c and - 0 options are not available on
the UNIX PC Version 3.5.

The -0 and -p options are not available on
the UNIX PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

- 11 -

Preface

pg(l)

prs(l)

ratfor{l)

rjestat(l)

sag(l)

sar{l)

scrse~1)

send(l)

sh(l)

shform(l)

sno(l)

sort(1)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The c option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The a, f, and h options are not available on
the UNIX PC Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

The - y, - z, and - M options are not
available on the UNIX PC Version 3.5.

- 12 -

spell(1)

stat(l)

stlog";n(1)

ststat(l)

t";mex(l)

toc(1)

tplot(l)

tput(l)

trenter(l)

troD(l)

tset(1)

uahelp(l)

Preface

The - i option is not available on the UNIX
PC Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC

- 13 -

Preface

osend(l)

vi(l)

who(l)

Section 2:

locking(2)

syslocal(2)

Section 3:

abs(3f)

acos(3f)

aimag(3f)

aint(3f)

asin(3f)

for Version 3.5.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

The vedit option is not available on the
UNIX PO Version 3.5.

The - Hand - g options are not available on
the UNIX PO Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PO
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PO
for Version 3.5.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2. Note that is a
FORTRAN library; most functions are
available in the 0 library.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on

- 14 -

atan(3f)

atan2(3f)

atoj(3c)

bool(3f)

conjg(3f)

cos(3f)

cosh(3f)

dim(3f)

dprod(3f)

eprintj(3t)

form(3t)

Preface

System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

- 15 -

Preface

ftape(3f)

getarg(3f)

getpen~3f)

£argc(3f)

z"ndex(3f)

Idgetname(3x)

len(3f)

lockj(3c)

log(3f)

loglD(3f)

max(3f)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 16 -

mclock(3f)

mz'n(3f)

menu(3t)

message(3t)

mod(3f)

paste(3t)

plot(3x)

rand(3f)

sz'gn(3f)

s£gnac(3f)

sz'n(3f)

Preface

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PO
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PO
for Version 3.5.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PO
for Version 3.5.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PO for Version 3.5, but is available on
System V Release 2.

- 17 -

Preface

s£nh(3f)

sqrt(3f)

std£o(3s)

tam(3t)

tan(3f)

tanh(3f)

track(3t)

w£nd(3t)

wrastop(3t)

x25alnk(3c)

x25clnk(3c)

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 18 -

x25hlnk{3c)

x25z'pvc(3c)

Section 4:

acct(4)

adj(4)

err/ile(4)

font(4)

gps(4)

pz'ot(4)

phone(4)

shlz'b(4)

term(4)

Preface

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on

- 19 -

Preface

term£nfo(4)

ua(4)

Section 5:

math(5)

modemcap(5)

mptx(5)

proj(5)

termcap(5)

values(5)

System V Release 2.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

This command is not available on System V
Release 2, but is available on the UNIX PC
for Version 3.5.

This command is not available on the UNIX
PC for Version 3.5, but is available on
System V Release 2.

- 20-

TABLE OF CONTENTS

1. Commands and Application Programs

intro ••.•. introduction to commands and application programs
300 .••. handle special functions of DASI 300 and 300s terminals
4014 • • • • • • • • • • paginator for the Tektronix 4014 terminal
450 • • . • . • • handle special functions of the DASI 450 terminal
adb • . . • . • . • . • . • • • • • . • • • • absolute debugger
admin ••.•••••.•.•• create and administer sees files
ar • . • • . • . archive and library maintainer for portable archives
as •••••••••.•••••.•••••.••• assembler
asa • • • • • . • • • • • interpret ASA carriage control characters
async_main .•.••.•• vt100, b513 terminal emulation program
awk ••••••.•••• pattern scanning and processing language
banner • • • • • • • • • • • • . • • • • • • • • • make posters
basename • • • • • • • • • • • • • deliver portions of path names
bc .••.••.••••• arbitrary-precision arithmetic language
bdiff. • • • • • • • • • . • . • • • • • • • • • • • • • big diff
bfs • • . • • . • • • • • • • • . • • • • • • • • big file scanner
cal • • • • • • . • • . • • . • • . • • • • • • • print calendar
cat. • • • • • • • • . • • . • • • • • concatenate and print files
cb ••.•••••.••.••.••••• e program beautifier
cc • . • • . • . • • • • . . • • • • • • • . • • cc - e compiler
cd •.•.••.•.•••.•.••• change working directory
cdc • • • . • • . • change the delta commentary of an sees delta
cflow . • . • • . • • • • . generate e flow graph
cfont • • • • • • • • . • • • convert fonts to ASeII and vice-versa
chmod . • • • • . • • • • • • . • • • • • • . • • change mode
chown • • • . . • • • . • • . • • . • • • change owner or group
clear ••••.••.••••.••.••. clear terminal screen
cmp • • • • . • • • • • . • . • • • • • • • . compare two files
col •.••••.••.•.•••••.• filter reverse line-feeds
comb ••.•••••••••..••••• combine sees deltas
comm • • • • • • • select or reject lines common to two sorted files
cp • • •• copy, link or move files
cpio • copy file archives in and out
cpp • • • the e language preprocessor
crypt • • • • • . • • encode/decode
csplit . . • • • • • • . • context split
cu • • • call another UNIX system
cut • • • cut out selected fields of each line of a file
cw ••••..•.•.••• prepare constant-width text for troff
cxref • • generate e program cross reference
date • • • • . • • . • • • • • • print and set the date
dc • . • • • • • . • . • • • . • • • • • . • • . desk calculator
dd . • • . . • • • convert and copy a file
delta. • • • • • . • . • • • make a delta (change) to an sees file

- 1 -

Table of Contents

deroff. • • • • . • • • • remove nroff/troff, tbl, and eqn constructs
diff • • . • • . • • • • • differential file and directory comparator
diff3 • • • • . • • . • • • • • • 3-way differential file comparison
diffmk • . • . • • . • • • • mark differences between files
dircmp . • • . • • • • . • • . • • . • • . directory comparison
du • . • . . • . • . • • • • . • • • • • • summarize disk usage
dump • • . • . • • . . • .• dump selected parts of an object file
echo • . • • • • • • echo arguments
ed • • • . • . • • . • • • • • • • • text editor
enable • • . • • • • enable/disable LP printers
env • • set environment for command execution
eqn . • format mathematical text for nroff or troff
ex • . • • • • • • • • • • • • • . • text editor
expr • • • • • • • . . • • • • evaluate arguments as an expression
factor • • • factor a number
fc ••••.•••••.•••••.••• copy floppy diskettes
file • . • . . • • • • • . • • • • • . . • • • determine file type
find . . • . • • • • • • • • • • • • • • . • • • • . • find files
get. • • • . • . • • . . • • • • • • get a version of an sees file
getopt •••••.•.•••.••••• parse command options
greek ••••..••.••••..•••• select terminal filter
grep. • • • search a file for a pattern
head. • . • . • • • . • • • . • . • • . . • • give first few lines
help. • • • • . • . • • • . • . • • • • • • • • • • ask for help
hp •• handle special functions of HP 2640 and 2621-series terminals
hyphen •••.••.•••••••••• find hyphenated words
id • • • • • • • . • . . • • . print user and group IDs and names
ipcrm . remove a message queue, semaphore set or shared memory id
ipcs • report inter-process communication facilities status
join • • . • . • • . • • • • • relational database operator
kill • • • • • • • . • • • • • • • • • • . terminate a process
ksh • • . • • • Korn shell command programming
ld. . • • . • • • • • • • • • • link editor for common object files
lex • • • • . • . • • . • generate programs for simple lexical tasks
line ..••••.•••••.•••••••... read one line
lint • • • • . • • • • . . • • • • • • . • • a e program checker
logname • • . • • • • • • • • • • • get login name
lorder •.•.•.••• find ordering relation for an obj ect library
lp •• • • • • • • • • • send/cancel requests to an LP line printer
lpstat • • . . • . • . • • • . • . • • print LP status information
Is • • • • . • . • • • . • . • • • • • • Iis1t contents of directory
m4 ••.•••••.•••••••••• ' ••• macro processor
mail • . . • . . • • • • • send mail to users or read mail
make • • . • . maintain, update, and regenerate groups of programs
makekey • . • • . • • . • • . • • • • • generate encryption key
mesg ••••••••.••.•••••• permit or deny messages
message . • • • • • . • • • • • • display error and help messages
mkdir .••.••••• • • • • • • • . make a directory

- 2 -

Table of Contents

mm ••••• print/check documents formatted with the MM macros
mmt. . . . typeset documents, view graphs, and slides
more ..•••..••••••• file perusal filter for crt viewing
newform . change the format of a text file
newgrp • • • • . • • • • • . • . • • • • • log in to a new group
nice • • • • • . . • • • • . • . • run a command at low priority
nl • • • • • . • • • . • . • • • . . line numbering filter
nm • • • • • • • print name list of common obj ect file
nohup. • • . . . • . run a command immune to hangups and quits
moff. . • • • • • • . • • format text
od. • • • • • • . • • • . • • • • • • • • • • • • . octal dump
pack . • • . • • • . • • . • . • . • . compress and expand files
passwd • . • • • • . • • • • • • • • • • . change login password
paste • merge same lines of several files or subsequent lines of one file
path • . locate executable file for command
pr • • • • • print files
prof . • • • • . • • display profile data
prs • • • . print an sees file
ps. . • • • • • • • • . • • • • . • . • . • report process status
ptx • • • • . • • • • . • • • • . • • • • . • . permuted index
pwd •. working directory name
regcmp •••....•••.••.•. regular expression compile
rm • • . • . • . . • • • . • • • • • • remove files or directories
rmdel • • • . • . • • . • • • . remove a delta from an sees file
sact. • • • . • . • • • • . print current sees file editing activity
sccsdiff . • • . • • . . • . . compare two versions of an sees file
scrset ••.•.••••••••••.••• set screen save time
sdb • • • • • • • • . • • • • • • • • • • • • symbolic debugger
sdiff . • • . . • . • • • . • . • . side-by-side difference program
sed • . • • • • . • . • • • • . • . • . • . • . • stream editor
sh •• shell, the standard/restricted command programming language
shform • • . displays menus and forms and returns user
size • . • • • . • • . . • print section sizes of common object files
sleep . • • . • • . • • • . • • • suspend execution for an interval
sort • . • • • • . . • • • • • • . • • • • sort and/or merge files
spell •.•.••.•.•.••••••••• find spelling errors
split • . • . . . • • • . . • • • • • • • • split a file into pieces
strip • • strip symbol and line number from a common object file
stty • • . • . • . set the options for a terminal
su. • . • . • • • • • • • . become super-user or another user
sum •••.•••..•. print checksum and block count of a file
sync. . • • • • • • • • • • • • • • • . • update the super block
tabs • • . • • • . set tabs on a terminal
tail • • . deliver the last part of a file
tar . • . • . • . • tape file archiver
tbl • format tables for nroff or trot!
tc
ted.

• phototypesetter simulator
• • . . • screen-oriented text editor

- 3-

Table of Contents

tee ••..••••.•••.••••••••••• pipe fitting
test •••••.••••••••• condition evaluation command
time . • . • • • • • • • • • . • • • • • • • • time a command
touch • update access and modification times of a file
tr • • . • . • • • • • • • • • • • • • • • • translate characters
true • • • • • • . • • • • • • • • • • • • • provide truth values
tset • • • • • • • . • • • • • • . • • • • • . set terminal modes
tsort • topological sort
tty • . • . • • • • • • . . • • • • • • • get the terminal's name
uahelp . • • • • . user agent help process
uaupd • • • • . • • • . • • • • . • update user agent special files
umask • . • . • • • • . • • • . • . • set file-creation mode mask
umodem ••••• remote file transfer program for ep 1M terminals
uname •• print name of current UNIX system
unget • • undo a previous get of an sees file
uniq • • • • report repeated lines in a file
units • • • . • • • • • • conversion program
uucp •••.••••••••••••••• UNIX-to-UNIX copy
uustat • • uucp status inquiry and job control
uuto • • • • • . • • • . . • • • • public UNIX-to-UNIX file copy
uux •••.••.•••••• UNIX-to-UNIX command execution
val . . • • • • • • • • . • • • . • . • • • . validate sees file
vc • • . • . • . • • • • . . • . • • • • • • • • version control
vi • • • . screen oriented (visual) display editor based on ex
wait. • • • • • • • • . • • • . • • • await completion of process
wc .••.•••.••.•••.•.•••.•.• word count
what •• identify sees files
who • . • • • • • • • • • • • • who is on the system
write • • • • . • • • . • • . • • write to another user
xargs . . • • construct argument list(s) and execute command
yacc • • • • • • . • . yet another compiler-compiler

2. System Calls

intro • • . • • introduction to system calls and error numbers
access • • • • • • • . • • • determine accessibility of a file
acct • • • • • • . • • • • • • enable or disable process accounting
alarm ••.••.••••.•••.• set a process's alarm clock
brk . • . • • . • . • • • • . change data segment space allocation
chdir • • • • • • • • • • . • • • • • • change working directory
chmod • . • . • . • • change mode of file
chown .•• change owner and group of a file
chroot .•••• • • • • • • • change root directory
close • • • • • • close a file descriptor
creat • • • • . • . • • • create a new file or rewrite an existing one
dup • • • . • • • . • . • • • . . duplicate an open file descriptor
exec • • . execute a file
exit • • • • • • . . • • . • • . • . • • terminate process

- 4-

Table of Contents

fcntl . • • file control
fork • . • • • . • • • • • • • • • • create a new process
getpid . • • get process, process group, and parent process IDs
getuid •••.. get real or effective user, real or effective group IDs
ioctl. • • • • • • • • • • • . • • • • • • • • • • control device
kill • • • • . • • • send a signal to a process or a group of processes
link. • • • • • • • • • • • • • link to a file
locking • • • • • • exclusive access to regions of a file
lseek • • • • • . . • • • • move read/write file pointer
mknod • • make a directory, or a special or ordinary file
mount •..•••••••••• mount a file system
msgctl . • • . • • • • • • . message control operations
msgget •••.•••.••••••••••• get message queue
msgop ••.•••.•.•.•••••••• message operations
nice • . • change priority of a process
open. • • • . • • • . . • • . . • • • open for reading or writing
pause • • • • . suspend process until signal
pipe. • • . • • create an interprocess channel
plock • . •• lock process, text, or data in memory
profil • . • • • • . • • • • execution time profile
ptrace • • • . • • • • • process trace
read . • • • • • • • • read from file
semctl • semaphore control operations
semget . . • . • . • • . • • • • • • • • • get set of semaphores
semop .••.••••.••.••••.• semaphore operations
setpgrp • • • . • • • set process group ID
setuid • . • • • . • • • • • • • . • • • . set user and group IDs
shmctl • • • • • • • . • • . . • shared memory control operations
shmget • . . • • . • • • • . . • • . get shared memory segment
shmop • • • • • • • . . • • . . • • • shared memory operations
signal . specify what to do upon receipt of a signal
stat • • • • • . . • . . • • . • • • • • • • • • • get file status
stime . • • • . • • • • set time
sync • update super-block
syslocal . • local system calls
time . . • • . • • • • get time
times • • • • • . • • • • . . • get process and child process times
ulimit • • • • • get and set user limits
umask . • • • set and get file creation mask
umount •.•••• unmount a file system
uname . • • get name of current UNIX system
unlink . • • • . • . • . • • • . • • • • . remove directory entry
ustat • • • • • • • • • • • . • • • . . • get file system statistics
utime • . • • . • • • . . • • set file access and modification times
wait • • • • • . • • • • wait for child process to stop or terminate
write •. . • • • . • • . • . • • . • • • • • • • write on a file

- 5 -

Table of Contents

3. Subroutines

intro • . . . • • • • • . • introduction to subroutines and libraries
a641 • • . convert between long integer and base-64 ASCII string
abort. . • • • . • generate an lOT fault
abs •.••..••....•••• return integer absolute value
assert . • . • . • • • • • . • • verify program assertion
atof. • • . . . • . • convert ASCII string to floating-point number
bessel • . • • . • • Bessel functions
bsearch . • . . . binary search
clock • • • • • report CPU time used
conv • • • • • • translate characters
crypt . • generate DES encryption
ctermid . • . . . • . . • • • • . • generate file name for terminal
ctime •..•....•••••. convert date and time to string
ctype • • • • . • • • • • • . • • • • • • • . classify characters
curses .•••••. screen functions with "optimal" cursor motion
cuserid • • . • • • • . • • • • get character login name of the user
dial . . • • • . establish an out-going terminal line connection
drand48 .•• generate uniformly distributed pseudo-random numbers
ecvt ••.••.••.•• convert floating-point number to string
end • . • . • . . • • . • • . • • • • . last locations in program
eprintf . . • • . . send a message to the status manager
erf • • • error function and complementary error function
exp . • . exponential, logarithm, power, square root functions
fclose . . • . . . • • • • • • • . close or flush a stream
ferror • • • • . • . • . . • • . • stream status inquiries
floor • • . • • . . floor, ceiling, remainder, absolute value functions
fop en . • . • • • • open a stream
form. • . • • • • . • . • . • • display and accept forms
fread ..•...••••.•.•.•••• binary input/output
frexp .•. manipulate parts of floating-point numbers
fseek • • . reposition a file pointer in a stream
ftw • • • • • . • • • • • walk a file tree
gamma. • . • ••••••• log gamma function
getc • • • . . • • • • get character or word from stream
getcwd .•...••• get path-name of current working directory
getenv • • return value for environment name
getgrent •....•••.•.•.••••• get group file entry
getlogin. • • • . • . • • . • . • • • • • • • • • get login name
getopt . . • . • get option letter from argument vector
getpass .•.•.•..• • • • . • . • • • . • read a password
getpent • • • • get and clean up printer status file entries
getpw ••.............•.•• get name from UID
getpwent. • • . • • • • • • . • • • • • . get password file entry
gets . get a string from a stream
getut • . • • • access utmp file entry
hsearch . • • • manage hash search tables

- 6 -

Table of Contents

hypot • • . • . • . . • . • • • • • • Euclidean distance function
13tol • • . . • . • convert between 3-byte integers and long integers
ldahread • • • read the archive header of a member of an archive file
ldclose • • • • . • . • . • • • • • • • close a common obj ect file
ldfhread • • . • . • • . read the file header of a common object file
ldlread • • manipulate line numbers of a common object file function
ldlseek . • . seek to line numbers of a section of a common object file
ldohseek . . • seek to the optional file header of a common object file
ldopen • • • . • • . • • . • open a common object file for reading
ldrseek . . . • . • seek to relocation entries of a common obj ect file
ldshread .•• read an indexed/named header of a common object file
ldsseek . . seek to an indexed/named section of a common object file
ldtbindex . • . . • . • • compute the index of a symbol table entry
ldtbread . read an indexed symbol table entry of a common object file
ldtbseek. • seek to the symbol table of a common object file
lockf • . . . • . . • • • • • • • • . • • • record locking on files
logname . . • . . • • • . • • • • . • • return login name of user
lsearch • • . . • • • • . • . • • • • • • linear search and update
malloc. . . . main memory allocator
matherr • . . • • error-handling function
memory • . . • • memory operations
menu . • . • • • • . . display and accept menus
message • display error and help messages
mktemp ..••.••.•..••••. make a unique file name
monitor • . • • • • • • • . • • prepare execution profile
nlist . . • • • • • . . • . • . • . . • get entries from name list
paste. . . • • . . . • . • • . • • • • . • • paste buffer utilities
perror . . . • . . • . • • • • . • • • • • system error messages
popen • . • . . initiate pipe to/from a process
printf . • • . • . . • print formatted output
putc • • put character or word on a stream
putenv . . change or add value to environment
putpwent. . • . • . • • • • • . • • . . write password file entry
puts • . . • • • . • . . • • . • put a string on a stream
qsort • . • . • . • . • . . • • . • . . • . . • • • quicker sort
rand .•.•••.•.••••• simple random-number generator
regcmp ••..•••••• compile and execute regular expression
scanf • • . . . • • • • • • • • • • • • • convert formatted input
setbuf . . . • . • . • • • • . assign buffering to a stream
setjmp •.•.•.•• • •.••.••• non-local go to
sinh • • . • • . • • • • • • • • • • hyperbolic functions
sleep • . • . . • . • . . . suspend execution for interval
sputl •• access long numeric data in a machine independent fashion
ssignal • . • • . • • • • • • • • • . • • • • • • software signals
stdio . • . • • • • • • • • standard buffered input/output package
stdipc . . standard interprocess communication package
string • . • • • • . • • . . • • string operations
strtod. • • • convert string to double-precision number

- 7 -

Table of Contents

strtol • • convert string to integer
swab. • •••• • . • • • • • • • • • • swap bytes
system • . • • issue a shell command
tam • a library of calls that supports terminal access,
tmpfile • • • • • • . • • • create a temporary file
tmpnam . . • . • • • • • . • . create a name for a temporary file
track. • • • • • . • • • . • • • • • . • . • track mouse motion
trig • . • • . • . • • • • • • . • . . • • trigonometric functions
tsearch ..••••••..••..• manage binary search trees
ttyname. • . • • • • • . . . • . • . • • find name of a terminal
ttyslot • • . . . find the slot in the utmp file of the current user
ungetc • • • • • • • • . . . push character back into input stream
vprintf • . . • • • print formatted output of a varargs argument list
wind . • . • • • . • . • creates and places a window
wrastop. • • • • . • • • pixel raster operations for bitmap displays

4. File Formats

intro. • • . • . • • • • . • • . . . • introduction to file formats
a.out • • • • • • . • • • common assembler and link editor output
adf • • • • • • • • • . • . • . • • • • • application data format
ar. • . . • . . . • • • • • . common archive file format
checklist • • • • • list of file systems processed by fsck
core • • format of core image file
cpio • • . • • • . • • • format of cpio archive
dir . . • . • • • . . format of directories
filehdr . . • . • . • • • • • • . file header for common object files
font . . • . . . • . • . • . • • • • font file format
fs • • • • • . • . • . • . • • • • • . • format of system volume
fspec. • • . . • . • . • . • • • • format specification in text files
gettydefs . • • • • • • . speed and terminal settings used by getty
group • • . • . • • • • • group file
inittab • • • • • • . • . . • . . script for the init process
inode • • • . . • • • • • . . . • • • format of an inode
issue • • . . . • • • • • . • • . . • • . . issue identification file
ldfcn • • • • . common object file access routines
linenum • • • • • . • • line number entries in a common object file
master . • • • • • . • • • . • • • master device information table
mnttab . • . • . • • • • • • • • • • • mounted file system table
passwd • • • • • • • • password file
phone . • . • • • • • phone directory file format
pnch . • . • • • • • • file format for card images
profile .. setting up an environment at login time
reloc • • • • relocation information for a common object file
sccsfile • • • • • • • • • . . • • • • • format of sees file
scnhdr ••••••..•. section header for a common object file
shlib ••.••••••..•••••••••.. shared library
syms • . • • • • • common object file symbol table format

- 8-

ua .
utmp •

5. Miscellaneous Facilities

Table of Contents

• . user agent configuration files
• utmp and wtmp entry formats

intro • . • . • • . . • . • . • • • • • introduction to miscellany
ascii. • . • • • . • • • • • • • . • • map of ASCII character set
environ • • • . • • • • • . • • • • • user environment
eqnchar • . • • • • • special character definitions for eqn and neqn
fcntl •..••••••.•.•..•.•.• file control options
greek . • • • • • • . . graphics for the extended TTY-37 type-box
man .•.•••.•• macros for formatting entries in this manual
mm .•.•.•. the MM macro package for formatting documents
modemcap. • • • • • • • . . • . • • modem capability data base
mptx •..•• the macro package for formatting a permuted index
regexp • regular expression compile and match routines
stat . • . data returned by stat system call
term • . conventional names for terminals
termcap . . . terminal capability data base
types • • . • . • . . . • . • • • • • primitive system data types
varargs .•••.•.••••. •• handle variable argument list

- 9 -

PERMUTED INDEX

/functions of HP 2640 and 2621-series terminals.
handle special functions of HP 2640 and 2621-series/ hp:

functions of DASI 300 and/ 300, 300s: handle special
/special functions of DASI 300 and 300s terminals.

of DASI 300 and 300s/ 300, 300s: handle special functions
functions of DASI 300 and 300s terminals. /special

13tol, Itol3: convert between 3-byte integers and long/
comparison. diff3: 3-way differential file .

Tektronix 4014 terminal. 4014: paginator for the .
paginator for the Tektronix 4014 terminal. 4014: . .

of the DASI 450 terminal. 450: handle special functions
special functions of the DASI 450 terminal. 450: handle

long integer and base-64/ a641, 164a: convert between .
abort: generate an lOT fault.

value. abs: return integer absolute
adb: absolute debugger. • . .

abs: return integer absolute value.
/floor, ceiling, remainder, absolute value functions.

form: display and accept forms.
menu: display and accept menus. . • . . .

of a file. touch: update access and modification times
utime: set file access and modification times.

accessibility of a file. access: determine
machine/ sputl, sgetl: access long numeric data in a

Idfcn: common object file access routines.
calls that supports terminal access,. tam: a library of

locking: exclusive access to regions of a file.
/setutent, endutent, utmpname: access utmp file entry.

access: determine accessibility of a file. .
enable or disable process accounting. acct:

process accounting. acct: enable or disable
sin, cos, tan, asin, acos, atan, atan2:/ ..

current SCCS file editing activity. sact: print
adb: absolute debugger.

putenv: change or add value to environment.
adf: application data format.

sces files. admin: create and administer
admin: create and administer SCCS files.

ua: user agent configuration files.
uahelp: user agent help process.

uaupd: update user agent special files. . . .
alarm: set a process's alarm clock.

clock. alarm: set a process's alarm
change data segment space allocation. brk, sbrk:

realloc, calloc: main memory allocator. malloc, free, • .
sort: sort and/or merge files.

link editor output. a.out: common assembler and
adf: application data format.

introduction to commands and application programs. intro:
maintainer for portable/ ar: archive and library

format. ar: common archive file
language. bc: arbitrary-precision arithmetic

for portable archives. ar: archive and library maintainer
cpio: format of cpio archive. .•.•...

ar: common archive file format.
header of a member of an archive file. /the archive

- 1 -

hp(l)
hp(l)
300(1)
300(1)
300(1)
300(1)
13tol(3C)
diff3(1)
4014(1)
4014(1)
450(1)
450(1)
a641(3C)
abort(3C)
abs(3C)
adb(l)
abs(3C)
floor(3M)
form(3t)
menu(3t)
touch(l)
utime(2)
access(2)
sputl(3X)
Idfcn(4)
tam(3t)
locking(2)
getut(3C)
access(2)
acct(2)
acct(2)
trig(3M)
sact(1)
adb(l)
putenv(3C)
adf(4)
admin(l)
admin(l)
ua(4)
uahelp(l)
uaupd(l)
al arm (2)
alarm(2)
brk(2)
malloc(3C)
sort(l)
a.out(4)
adf(4)
intro(1)
ar(l)
ar(4)
bc(1)
ar(l)
cpio(4)
ar(4)
Idahread(3X)

Permuted Index

an archive/ ldahread: read the archive header of a member of
tar: tape file archiver.

maintainer for portable archives. /archive and library
cpio: copy file archives in and out.

varargs: handle variable argument list.
formatted output of a varargs argument list. /print

command. xargs: construct argument list(s) and execute
getopt: get option letter from argument vector.

expr: evaluate arguments as an expression.
echo: echo arguments.

bc: arbitrary-precision arithmetic language.
expr: evaluate arguments as an expression.

as: assembler. . . .
characters. asa: interpret ASA carriage control

control characters. asa: interpret ASA carriage
cfont: convert fonts to ASCII and vice-versa.

ascii: map of ASCII character set.
set. ascii: map of ASCII character

long integer and base-64 ASCII string. /convert between
number. atof: convert ASCII string to floating-point

and/ ctime, localtime, gmtime, asctime, tzset: convert date
trigonometric/ sin, cos, tan, asin, acos, atan, atan2: .

help: ask for help.
output. a.out: common assembler and link editor

as: assembler.
assertion. assert: verify program

assert: verify program assertion.
setbuf: assign buffering to a stream.

terminal emulation program. async_main: vt100, b5I3
sin, cos, tan, asin, acos, atan, atan2: trigonometric/

cos, tan, asin, acos, atan, atan2: trigonometric/ sin,
floating-point number. atof: convert ASCII string to

double-precision/ strtod, atof: convert string to
integer. strtol, atol, atoi: convert string to

integer. strtol, atol, atoi: convert string to
wait: await completion of process.

processing language. awk: pattern scanning and
program. async_main: vt100, b5l3 terminal emulation

ungetc: push character back into input stream.
banner: make posters.

modem capability data base. modem cap:
terminal capability data base. termcap:

between long integer and base-64 ASCII string. /convert
(visual) display editor based on ex. /screen oriented

portions of path names. basename, dirname: deliver
arithmetic language. bc: arbitrary-precision

bdiff: big diff.
cb: C program beautifier.

jO, jl, jn, yO, yl, yn: Bessel functions ...
bfs: big file scanner.

fread, fwrite: binary input/output.
bsearch: binary search. . . .

tfind, tdelete, twalk: manage binary search trees. tsearch,
pixel raster operations for bitmap displays. wrastop:
sum: print checksum and block count of a file.

sync: update the super block.•... ..
space allocation. brk, sbrk: change data segment

bsearch: binary search.

- 2 -

Idahread(3X)
tar(l)
ar(l)
cpio(l)
varargs(5)
vprintf(3S)
xargs(l)
getopt(3C)
expr(l)
echo(l)
bc(l)
expr(l)
as(l)
asa(1)
asa(l)
cfont(l)
ascii(5)
ascii(5)
a641(3C)
atof(3C)
ctime{3C)
trig(3M)
help{l)
a.out(4)
as(l)
assert{3X)
assert{3X)
setbuf{3S)
async~ain(10)
trig(3M)
trig(3M)
atof(3C)
strtod{3C)
strtol{3C)
strtol(3C)
wait(l)
awk(l)
async_main{IC)
ungetc(3S)
banner{l)
modemcap(5)
termcap(5)
a641(3C)
vi{l)
basename{l)
bc{l)
bdiff{l)
cb{l)
bessel(3M)
bfs{l)
fread{3S)
bsearch(3C)
tsearch{3C)
wrastop(3t)
sum(l)
sync{l)
brk(2)
bsearch{3C)

paste: paste buffer utilities.•
stdio: standard buffered input/output package.

setbuf: assign buffering to a stream.
swab: swap bytes.

cc - 0 compiler. • . • .
cflow: generate 0 flow graph. . ..

cpp: the 0 language preprocessor.
cb: 0 program beautifier.

lint: a 0 program checker.
cxref: generate

dc: desk
cal: print

cu:
data returned by stat system

malloc, free, realloc,
intro: introduction to system

Syslocal: local system
access,. tam: a library of
to an LP line printer. lp,

modemcap: modem
termcap: terminal

pnch: file format for
asa: interpret ASA

files.

o program cross reference.
cal: print calendar.
calculator.
calendar.
call another UNIX system.
call. stat:
calloc: main memory allocator.
calls and error numbers.
calls .••......•.
calls that supports terminal
cancel: send/cancel requests
capability data base.
capability data base. . . .
card images.
carriage control characters.
cat: concatenate and print
cb: 0 program beautifier. •
cc - 0 compiler. . • • . .
cd: change working directory.

commentary of an SO OS delta. cdc: change the delta
ceiling, remainder,/ floor, ceil, Cmod, Cabs: floor,

/ceil, fmod, fabs: floor, ceiling, remainder, absolute/
cflow: generate 0 flow graph.

and vice-versa. cfont: convert fonts to ASOII
delta: make a delta (change) to an SO OS file.

pipe: create an interprocess channel.
stream. ungetc: push character back into input

and neqn. eqnchar: special character definitions for eqn
user. cuserid: get character login name of the

/getchar, fgetc, getw: get character or word from stream.
/putchar, fputc, putw: put character or word on a stream.

ascii: map of ASOII character set.
interpret ASA carriage control characters. asa:

_tolower, toascii: translate characters. / _toupper, . . •
iscntrl, isascii: classify characters. /isprint, isgraph,

tr: translate characters.
directory. chdir: change working

constant-width text fori cw, checkcw: prepare
text for nroff or/ eqn, neqn, checkeq: format mathematical

lint: a 0 program checker. ••..•..•.
systems processed by fsck. checklist: list of file

formatted with the/ mm, osdd, checkmm: print/check documents
file. sum: print checksum and block count of a

chown, chgrp: change owner or group.
times: get process and child process times.

terminate. wait: wait for child process to stop or . •
chmod: change mode.
chmod: change mode of file.

of a file. chown: change owner and group

- 3 -

Permuted Index

paste(3t)
stdio(3S)
setbuf(3S)
swab(30)
cc(l)
cflow(l)
cpp(l)
cb(l)
lint(l)
cxref(l)
cal(l)
dc(l)
cal(l)
cu(lC)
stat (5)
malloc(30)
intro(2)
syslocal(2)
tam(3t)
lp(l)
modemcap(5)
termcap(5)
pnch(4)
asa(l)
cat(l)
cb(l)
cC(l)
cd(l)
cdc(l)
floor(3M)
floor(3M)
cflow(l)
cfont(l)
delta(l)
pipe(2)
ungetc(3S)
eqnchar(5)
cuserid(3S)
getc(3S)
putc(3S)
ascii(5)
asa(l)
conv(30)
ctype(30)
tr(l)
chdir(2)
cW(l)
eqn(l)
lint(1)
checklist(4)
mm(l)
sum(l)
chown(l)
times(2)
wait(2)
chmod(l)
chmod(2)
chown(2)

Permuted Index

group.

isgraph, iscntrl, isascii:
getpent, endpent: get and

clear:
status/ ferror, feof,

alarm: set a process's alarm

ldclose, ldaclose:
close:

descriptor.
fclose, mush:

line-feeds.

comb:
common to two sorted files.

nice: run a
env: set environment for

uux: UNIX-to-UNIX
quits. nohup: run a

getopt: parse
locate executable file for

ksh: Korn shell
/shell, the standard/restricted

system: issue a shell
test: condition evaluation

time: time a
argument list(s) and execute

intro: introduction to
cdc: change the delta

ar:
editor output. a.out:

routines. ldfcn:
ldopen, ldaopen: open a

/line number entries of a
Idc1ose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a

/section header of a
an indexed/named section of a

of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

nm: print name list of
relocation information for a
scnhdr: section header for a

line number information from a
table format. syms:

filehdr: file header for
ld: link editor for

size: print section sizes of
comm: select or reject lines

ipcs: report inter-process

chown, chgrp: change owner or
chroot: change root directory.
classify characters. /isprint,
clean up printer status file/
clear: clear terminal screen.
clear terminal screen.
clearerr, fileno: stream
clock.•.
clock: report CPU time used.
close a common object file.
close a file descriptor.
close: close a file . . .
close or flush a stream.
cmp: compare two files.
col: filter reverse
comb: combine SCCS deltas.
combine SCCS deltas.
comm: select or reject lines
command at low priority.
command execution. . . .
command execution. . • .
command immune to hangups and
command options. . . .
command. path:
command programming.
command programming language.
command.
command.
command.
command. xargs: construct
commands and application/
commentary of an SCCS delta.
common archive file format.
common assembler and link
common object file access
common object file fori
common object file function.
common object file.
common object file. ldfhread:
common object file. /number
common object file. /seek to
common object file.
common object file.
common object file. /seek to
common object file. /the index
common object file. /indexed
common object file. ldtbseek:
common object file. linen urn:
common object file.
common object file. reloc:
common object file.
common object file. land
common object file symbol
common object files.
common object files. • . .
common object files. . . .
common to two sorted files.
communication facilities/ .

- 4 -

chown(1)
chroot(2)
ctype(3C)
getpent(3)
c1ear(l)
c1ear(l)
fe rror (3S)
alarm(2)
clock(3P)
Idclose(3X)
close(2)
close (2)
fc1ose(3S)
cmp(l)
col(l)
comb(l)
comb(l)
comm(l)
nice(1)
env(1)
uux(lC)
nohup(l)
getopt(l)
path(1)
ksh(l)
sh(l)
system(3S)
test(l)
time(l)
xargs(l)
intro(l)
cdc(l)
ar(4)
a.out(4)
Idfcn(4)
Idopen(3X)
Idlread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
nm(1)
reloc(4)
scnhdr(4)
strip (1)
syms(4)
filehdr(4)
ld(l)
size(1)
comm(l)
ipcs(1)

stdipc: standard interprocess communication package.
file and directory comparator. /differential

cmp: compare two files.
SCCS file. sccsdiff: compare two versions of an

diff3: 3-way differential file
dircmp: directory

expression. regcmp, regex:
regexp: regular expression

regcmp: regular expression
cc - C

yacc: yet another
erf, erfc: error function and

wait: await
pack, pcat, unpack:

table entry of a/ Idtbindex:
cat:

test:
ua: user agent

an out-going terminal line
cw, checkcw: prepare

execute command. xargs:
nroff/troff, tbl, and eqn

Is: list
csplit:

asa: interpret ASA carriage
ioctl:

fcntl: file
msgctl: message

semctl: semaphore
shmctl: shared memory

fcntl: file
uucp status inquiry and job

vc: version
terminals. term:

units:
dd:

floating-point number. atof:
integers and/ 13tol, Itol3:

and base-64 ASCII/ a641, 164a:
/gmtime, asctime, tzset:

to string. ecvt, fcvt, gcvt:
vice-versa. cfont:

scanf, fscanf, sscanf:
strtod, atof:

strtol, atol, atoi:
dd: convert and

cpio:
fc:

comparison.
comparison. . • . . • . •
compile and execute regular
compile and match routines.
compile.
compiler .••......
compiler-compiler. • . . .
complementary error function.
completion of process.
compress and expand files.
compute the index of a symbol
concatenate and print files.
condition evaluation command.
configuration files. • . • . .
connection. dial: establish
constant-width text for troff.
construct argument list(s) and
constructs. deroff: remove
contents of directory.
context split.
control characters.
control device.
control.
control operations.
control operations.
control operations.
control options.
control. uustat: .
control.
conventional names for
conversion program.
convert and copy a file.
convert ASCII string to
convert between 3-byte
convert between long integer
convert date and time to/
convert floating-point number
convert fonts to ASCII and
convert formatted input.
convert string to/
convert string to integer.
copy a file. . •••..
copy file archives in and out.
copy floppy diskettes.

cp, In, mv: copy, link or move files.
uulog, uuname: UNIX-to-UNIX copy. uucp,

public UNIX-to-UNIX file copy. uuto, uupick:
file. core: format of core image

core: format of core image file.
atan2: trigonometric/ sin,

functions. sinh,
sum: print checksum and block

wc: word
files.

cos, tan, asin, acos, atan,
cosh, tanh: hyperbolic
count of a file.
count.
cp, In, mv: copy, link or move

- 5 -

Permuted Index

stdipc(3C)
diff(1)
cmp(l)
sccsdiff(l)
diff3(1)
dircmp(l)
regcmp(3X)
regexp(5)
regcmp(1)
cC(l)
yacc(l)
erf(3M)
wait(l)
pack(l)
Idtbindex(3X)
cat(l)
test(l)
ua(4)
dial(3C)
cW(l)
xargs(l)
deroff(l)
Is(l)
csplit(l)
asa(l)
ioctl(2)
fcntl(2)
msgctl(2)
semctl(2)
shmctl(2)
fcntl(5)
uustat(lC)
vc(l)
term(5)
units(l)
dd(l)
atof(3C)
13tol(3C)
a641(3C)
ctime(3C)
ecvt(3C)
cfont(1)
scanf(3S)
strtod(3C)
strtol(3C)
dd(l)
cpio(l)
fc(l)
cp(l}
uucp(lC)
uuto(lC}
core(4}
core(4)
trig(3M)
sinh(3M)
sum(l}
wC(l)
cp(l}

Permuted Index

cpio: format of cpio archive.
and out. cpio: copy file archives in .

cpio: format of cpio archive.
file transfer program for CP/M terminals. /remote

preprocessor. cpp: the C language
clock: report CPU time used. . . . • •

rewrite an existing one. creat: create a new file or .
file. tmpnam, tempnam: create a name for a temporary

an existing one. creat: create a new file or rewrite
fork: create a new process. .

tmpfile: create a temporary file. . .
channel. pipe: create an interprocess

files. admin: create and administer SCCS
wind: creates and places a window.

umask: set and get file creation mask.
cxref: generate C program cross reference.
page: file perusal filter for crt viewing. more,

crypt: encode/decode.
generate DES encryption. crypt, setkey, encrypt:

csplit: context split.
for terminal. ctermid: generate file name

asctime, tzset: convert date/ ctime, localtime, gmtime, .
cu: call another UNIX system.

activity. sact: print current SCCS file editing
uname: print name of current UNIX system.

uname: get name of current UNIX system.
slot in the utmp file of the current user. /find the
getcwd: get path-name of current working directory.
"optimal" cursor motion. curses: screen functions with
functions with "optimal" cursor motion. curses: screen

name of the user. cuserid: get character login
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
constant-width text fori cw, checkcw: prepare

cross reference. cxref: generate C program
/handle special functions of DASI 300 and 300s terminals.

special functions of the DASI 450 terminal. /handle
modemcap: modem capability data base.

termcap: terminal capability data base.
adf: application data format.

/sgetl: access long numeric data in a machine independent/
plock: lock process, text, or data in memory.

prof: display profile data. •
call. stat: data returned by stat system

brk, sbrk: change data segment space allocation.
types: primitive system data types.

join: relational database operator. . .
/asctime, tzset: convert date and time to string.

date: print and set the date. . . . • • • . .
date: print and set the date.
dc: desk calculator.
dd: convert and copy a file.

adb: absolute debugger. . • . .
sdb: symbolic debugger.

eqnchar: special character dfor eqn and neqn. . .
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
delta commentary of an SCCS delta. cdc: change the

- 6 -

cpio(4)
cpio(l)
cpio(4)
umodem(1)
cpp(l)
clock(3C)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
tmpfile(3S)
pipe(2)
admin(l)
wind(3t)
umask(2)
cxref(l)
more(l)
crypt(l)
crypt(3C)
csplit(l)
ctermid(3S)
ctime(3C)
cu(1C)
sact(l)
uname(l)
uname(2)
ttyslot(3C)
getcwd(3C)
curses(3)
curses(3)
cuserid(3S)
cut(l)
cut(1)
cw(1)
cxref(1)
300(1)
450(1)
modemcap(5)
termcap(5)
adf(4)
sputl(3X)
plock(2)
prof(l)
stat(5)
brk(2)
types(5)
join(1)
ctime(3C)
date(1)
date(1)
dc(1)
dd(l)
adb(1)
(1)
eqnchar(5)
basename(1)
tail(l)
cdc(l)

file. delta: make a delta (change) to an SCCS
delta. cdc: change the delta commentary of an SCCS

rmdel: remove a delta from an sces file.
to an sces file. delta: make a delta (change)

comb: combine SCCS deltas.
mesg: permit or deny messages.

tbl, and eqn constructs. deroff: remove nroff/troff,
setkey, encrypt: generate DES encryption. crypt,

close: close a file descriptor.
dup: duplicate an open file descriptor.

dc: desk calculator.
file. access: determine accessibility of a

file: determine file type.
master: master device information table. .

ioctl: control device. . • . . • . • • .
terminal line connection. dial: establish an out-going

bdiff: big diff. •....•.•..
directory comparator. diff: differential file and • .

comparison. diff3: 3-way differential file
sdiff: side-by-side difference program.

diffmk: mark differences between files.
directory comparator. diff: differential file and • • .

diff3: 3-way differential file comparison.
between files. diffmk: mark differences

dir: format of directories. .
dircmp: directory comparison.

dir: format of directories.
rm, rmdir: remove files or directories.

cd: change working directory.
chdir: change working directory. .

chroot: change root directory. •
diff: differential file and directory comparator.

dircmp: directory comparison.
unlink: remove directory entry.

phone: phone directory file format. .
path-name of current working directory. getcwd: get

Is: list contents of directory. . . •
mkdir: make a directory ...••..

pwd: working directory name. • . .
ordinary file. mknod: make a directory, or a special or

path names. basename, dirname: deliver portions of
printers. enable, disable: enable/disable LP

acct: enable or disable process accounting.
du: summarize disk usage. ••••.•
fc: copy floppy diskettes. . • •

form: display and accept forms. .
menu: display and accept menus.

/view: screen oriented (visual) display editor based on ex.
messages. message: display error and help
messages. message: display error and help

prof: display profile data.
returns user. shform: displays menus and forms and

raster operations for bitmap displays. wrastop: pixel
hypot: Euclidean distance function.

/lcong48: generate uniformly distributed pseudo-random/
mm, osdd, checkmm: print/check documents formatted with the/

macro package for formatting documents. mm: the MM
slides. mmt, mvt: typeset documents, view graphs, and

- 7 -

Permuted Index

delta(l)
cdc(l)
rmdel(l)
delta(l)
comb(l)
mesg(l)
deroff(l)
crypt(3C)
close(2)
dup(2)
dc(l)
access(2)
file(l)
master(4)
ioctl(2)
dial(3C)
bdiff(l)
diff(l)
diff3(1)
sdiff(l)
diffmk(l)
diff(l)
diff3(1)
diffmk(l)
dir(4)
dircmp(l)
dir(4)
rm(l)
cd(l)
chdir(2)
chroot(2)
diff(l)
dircmp(l)
unlink(2)
phone(4)
getcwd(3C)
Is(l)
mkdir(l)
pWd(l)
mknod(2)
basename(l)
enable(l)
acct(2)
du(l)
fC(l)
form(3t)
menu(3t)
vi(l)
message(l)
message(3t)
prof(l)
shform(l)
wrastop(3t)
hypot(3M)
drand48(3C)
mm(l)
mm(5)
mmt(l)

Permuted Index

/atof: convert string to double-precision number. .
nrand48, mrand48, jrand48,/ drand48, erand48, Irand48,

du: summarize disk usage.
an object file. dump: dump selected parts of

od: octal dump. .••..••..
object file. dump: dump selected parts of an

descriptor. dup: duplicate an open file
descriptor. dup: duplicate an open file

echo: echo arguments.
echo: echo arguments.

floating-point number to/ ecvt, fcvt, gcvt: convert
ed, red: text editor.

program. end, etext, edata: last locations in
ex, edit: text editor. .

sact: print current SCCS file editing activity. .
oriented (visual) display editor based on ex. /screen

ed, red: text editor.
ex, edit: text
files. ld: link

common assembler and link
sed: stream

ted: screen-oriented text
/user, real group, and

and/ /getegid: get real user,
for a pattern. grep,

/vtlOO, b513 terminal
enable/disable LP printers.

accounting. acct:
enable, disable:

crypt:
encryption. crypt, setkey,

setkey, encrypt: generate DES
makekey: generate

locations in program.
/getgrgid, getgrnam, setgrent,

printer status file/ getpent,
/getpwuid, getpwnam, setpwent,

utmp/ /pututline, setutent,
nlist: get

clean up printer status file
file. linenum: line number

man: macros for formatting
file/ /manipulate line number

common/ /seek to line number
/ldnrseek: seek to relocation

utmp, wtmp: utmp and wtmp
endgrent: get group file

endpwent: get password file
utmpname: access utmp file

/the index of a symbol table
/read an indexed symbol table

putpwent: write password file

editor.
editor for common object
editor output. a.out:
editor.
editor.
effective group IDs.
effective user, real group,
egrep, fgrep: search a file
emulation program.
enable, disable:
enable or disable process
enable/disable LP printers.
encode/decode.
encrypt: generate DES
encryption. crypt, . •
encryption key.
end, etext, edata: last
endgrent: get group file/
endpent: get and clean up
endpwent: get password file/
endutent, utmpname: access
entries from name list.
entries. /endpent: get and
entries in a common object
entries in this manual.
entries of a common object
entries of a section of a .
entries of a section of a/
entry formats. . . • • .
entry. /getgrnam, setgrent,
entry. /getpwnam, setpwent,
entry. /setutent, endutent, .
entry of a common object file.
entry of a common object file.
entry.

unlink: remove directory entry.
command execution. env: set environment for

environ: user environment.
profile: setting up an environment at login time.

environ: user environment.
execution. env: set environment for command

- 8-

strtod(3C)
drand48(3C)
du(1)
dump(1)
od(l)
dump(l)
dup(2)
dup(2)
echo(l)
echo(1)
ecvt(3C)
ed(1)
end(3C)
ex(l)
sact(l)
vi(1)
ed(1)
eX(l)
Id(1)
a.out(4)
sed(1)
ted(l)
getuid(2)
getuid(2)
grep(1)
async_main(1 C)
enable(1)
acct(2)
enable(1)
crypt(l)
crypt(3C)
crypt(3C)
makekey(1)
end(3C)
getgrent(3C)
getpent(3)
getpwent(3C)
getut(3C)
nlist(3C)
getpent(3)
linenum(4)
man(5)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
utmp(4)
getgrent(3C)
getpwent(3C)
getut(3C)
Idtbindex(3X)
Idtbread(3X)
putpwent(3C)
unlink(2)
env(1)
environ (5)
profile(4)
environ(5)
env(1)

getenv: return value for environment name.
putenv: change or add value to environment.

status manager. eprintf: send a message to the
character definitions for eqn and neqn. /special . .

remove nroff/troff, tbl, and eqn constructs. deroff:
mathematical text for nroff/ eqn, neqn, checkeq: format
definitions for eqn and neqn. eqnchar: special character

mrand48, jrand48,/ drand48, erand48, Irand48, nrand48,
complementary error function. erf, erfc: error function and

complementary error/ erf, erfc: error function and ..
system error/ perror, ermo, sys_errlist, sysJerr:

message: display error and help messages.
message: display error and help messages.

complementary / erf, erfc: error function and • • •
function and complementary error function. /erfc: error
sys_errlist, sys_nerr: system error messages. /errno,

to system calls and error numbers. /introduction
matherr: error-handling function.

hash check: find spelling errors. /hashmake, spellin,
terminal line/ dial: establish an out-going

in program. end, etext, edata: last locations
hypot: Euclidean distance function.

expression. expr: evaluate arguments as an
test: condition evaluation command.

ex, edit: text editor.
display editor based on ex. /screen oriented (visual)

a file. locking: ex elusive access to regions of
exe elp , execvp: execute a/ exeel, execv, exeele, execve,

execvp: execute/ exeel, execv, exeele, execve, exeelp,
exeel, execv, exeele, execve, execlp, execvp: execute a/

execve, exeelp, execvp: execute a file. /exeele, ..
construct argument list(s) and execute command. xargs:

regcmp, regex: compile and execute regular expression.
set environment for command execution. env:

sleep: suspend execution for an interval.
sleep: suspend execution for interval.

monitor: prepare execution profile.
profil: execution time profile.

uux: UNIX-t<rUNlX command execution.
execvp: execute a/ exeel, execv, exeele, execve, exeelp,

execute/ execl, execv, execle, execve, execlp, execvp: . .
/execv, execle, execve, exeelp, execvp: execute a file.

a new file or rewrite an existing one. creat: create
process. exit, _exit: terminate . .

exit, _exit: terminate process.
exponential, logarithm,/ exp, log, loglO, pow, sqrt:

pcat, unpack: compress and expand files. pack,
exp, log, loglO, pow, sqrt: exponential, logarithm, power,j

expression. expr: evaluate arguments as an
routines. regexp: regular expression compile and match

regcmp: regular expression compile.
expr: evaluate arguments as an expression.

compile and execute regular expression. regcmp, regex:
greek: graphics for the extended TIY-37 type-box.

remainder,/ floor, ceil, fmod, fabs: floor, ceiling, . .
factor: factor a number.

factor: factor a number.

- 9 -

Permuted Index

getenv(3C)
putenv(3C)
eprintf(3t)
eqnchar(5)
deroff(l)
eqn(l)
eqnchar(5)
drand48(3C)
erf(3M)
erf(3M)
perror(3C)
message(l)
message(3t)
erf(3M)
erf(3M)
perror(3C)
intro(2)
matherr(3M)

spell(l)
dial(3C)
end(3C)
hypot(3M)
expr(l)
test(1)
eX(l)
vi(l)
locking(2)
exec(2)
exec(2)
exec(2)
exec(2)
xargs(l)
regcmp(3X)
env(l)
sleep(l)
sleep (3C)
monitor(3C)
profil(2)
uux(lC)
exec(2)
exec(2)
exec(2)
creat(2)
exit(2)
exit(2)
exp(3M)
pack(l)
exp(3M)
expr(l)
regexp(5)
regcmp(l)
expr(l)
regcmp(3X)
greek(5)
floor(3M)
factor(l)
factor(l)

Permuted Index

true, false: provide truth values.
data in a machine independent fashion. /access long numeric

abort: generate an lOT fault. ••.••...•
fc: copy floppy diskettes.

a stream. fclose, fHush: close or flush
fcntl: file control.
fcntl: file control options.

floating-point number/ ecvt, fcvt, gcvt: convert • . .
fopen, freopen, fdopen: open a stream. .

status inquiries. ferror, feof, clearerr, fileno: stream
file no: stream status/ ferror, feof, clearerr,

stream. fclose, mush: close or flush a
word from/ getc, getchar, fgetc, getw: get character or

stream. gets, fgets: get a string from a
pattern. grep, egrep, fgrep: search a file for a
pattern. grep, egrep, fgrep: search a file for a

times. utime: set file access and modification
ldfcn: common object file access routines.

determine accessibility of a file. access: . . • . • . .
diff: differential file and directory comparator.

tar: tape file archiver.
cpio: copy file archives in and out.

chmod: change mode of file.
change owner and group of a file. chown:

diff3: 3-way differential file comparison.
fcntl: file control. . •
fcntI: file control options.

uupick: public UNIX-to-UNIX file copy. uuto,
core: format of core image file. .••.••

umask: set and get file creation mask.
fields of each line of a file. cut: cut out selected

dd: convert and copy a file.
a delta (change) to an SCCS file. delta: make

close: close a file descriptor. •
dup: duplicate an open file descriptor. .

file: determine file type.
selected parts oC an object file. dump: dump

sact: print current SCCS file editing activity.
and clean up printer status file entries. /endpent: get

setgrent, endgrent: get group file entry. /getgrnam,
endpwent: get password file entry. /setpwent,
utmpname: access utmp file entry. /endutent,

putpwent: write password file entry.
execlp, execvp: execute a file. /execv, execle, execve,

grep, egrep, Cgrep: search a file Cor a pattern.
grep, egrep, Cgrep: search a file Cor a pattern.

path: locate executable file for command.
ldaopen: open a common object file Cor reading. ldopen,

ar: common archive file format.
font: font file Cormat. • . . • . •

pnch: file Cormat for card images.
phone: phone directory file format. .•. • . . •

intro: introduction to file Cormats. • • . . • • •
entries oC a common object file Cunction. /line number

get: get a version oC an SCCS file. ..••....••
group: group file. ..••..•••.
files. filehdr: file header Cor common object

file. ldfhread: read the file header oC a common object

- 10 -

true(l)
sputI(3X)
abort(3C)
CC(l)
fclose(3S)
Ccntl(2)
Ccntl(5)
ecvt(3C)
fopen(3S)
fe rror (3S)
Cerror(3S)
fclose(3S)
getc(3S)
gets(3S)
grep(l)
grep.1.new
utime(2)
Idfcn(4)
access(2)
diff(l)
tar(1)
cpio(l)
chmod(2)
chown(2)
diff3(1)
fcntl(2)
Ccntl(5)
uuto(lC)
core(4)
umask(2)
cut(1)
dd(l)
delta(l)
close(2)
dup(2)
file(l)
dump(l)
sact(l)
getpent(3)
getgrent(3C)
getpwent(3C)
getut(3C)
putpwent(3C)
exec(2)
grep(l)
grep. 1. new
path(l)
Idopen(3X)
ar(4)
Cont(4)
pnch(4)
phone(4)
intro(4)
Idlread(3X)
get(l)
group (4)
filehdr(4)
Idfhread(3X)

ldohseek: seek to the optional file header of a common object/
split: split a file into pieces. •..••.

issue: issue identification file. •.••••.••••
of a member of an archive

close a common object
file header of a common object

a section of a common object
file header of a common object

a section of a common object
header of a common object
section of a common object

table entry of a common object
table entry of a common object

table of a common object
entries in a common object

link: link to a

file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.

/read the archive header
ldclose, ldaclose:
ldfhread: read the
/line number entries of
/seek to the optional
/relocation entries of
/indexed/named section
Ito an indexed/named
/the index of a symbol
/read an indexed symbol
/seek to the symbol
linen urn: line number

access to regions of a file. locking: exclusive
or a special or ordinary file. /make a directory,

ctermid: generate file name for terminal.
mktemp: make a unique file name.

change the format of a text file. newform:
name list of common object file. nm: print

/find the slot in the utmp file of the current user.
one. creat: create a new file or rewrite an existing

passwd: password file. •........
or subsequent lines of one file. /lines of several files

viewing. more, page: file perusal filter for crt
/rewind, ftell: reposition a file pointer in a stream.

lseek: move read/write file pointer.
prs: print an SCCS file. •.......

read: read from file. •.••.•..
for a common object file. /relocation information

remove a delta from an SCCS file. rmdel: ..••.
bfs: big file scanner. • • . • .

two versions of an SCCS file. sccsdiff: compare
sccsfile: format of SCCS file. ..••.•.

header for a common object file. scnhdr: section
stat, fstat: get file status.

from a common object file. /line number information
checksum and block count of a file. sum: print

syms: common object file symbol table format.
volume. file system: format of system

mount: mount a file system.
ustat: get file system statistics.

mnttab: mounted file system table.
umount: unmount a file system.

fsck. checklist: list of file systems processed by
deliver the last part of a file. tail: • . • . . . •

tmpfile: create a temporary file.
create a name for a temporary file. tmpnam, tempnam:

and modification times of a file. touch: update access
terminals. umodem: remote file transfer program for CP/M

ftw: walk a file tree.
file: determine file type.

undo a previous get of an SCCS file. unget:
report repeated lines in a file. uniq:

val: validate SCCS file.
write: write on a file.

- 11 -

Permuted Index

Idohseek(3X)
split(l)
issue(4)
ldahread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
link(2)
locking(2)
mknod(2)
ctermid(3S)
mktemp(3C)
newform(l)
nm(l)
ttyslot(3C)
creat(2)
passwd(4)
paste(l)
more(l)
fseek(3S)
Iseek(2)
prs(l)
read(2)
reloc(4)
rmdel(l)
bfs(l)
sccsdiff(l)
sccsfile(4)
scnhdr(4)
stat(2)
strip(l)
sum(l)
syms(4)
fs(4)
mount(2)
ustat(2)
mnttab(4)
umount(2)
checklist(4)
tail(l)
tmpfile(3S)
tmpnam(3S)
touch(l)
umodem(l)
ftw(3C)
file(l)
unget(l)
uniq(l)
val(l)
write(2)

Permuted Index

umask: set file-creation mode mask.
common object files. filehdr: file header for
ferror, feof, clearerr, file no: stream status/

create and administer SCCS files. admin:
cat: concatenate and print files.

cmp: compare two files.
lines common to two sorted files. comm: select or reject

cp, In, mv: copy, link or move
mark differences between

file header for common object
find: find

format specification in text
link editor for common object

lockf: record locking on
rm, rmdir: remove

/merge same lines of several
unpack: compress and expand

pr: print
section sizes of common object

sort: sort and/or merge
ua: user agent configuration

update user agent special
what: identify SCCS

more, page: file perusal
greek: select terminal

nl: line numbering
col:

find:

files.
files. diffmk:
files. filehdr:
files.
files. fspec:
files. ld:
files.
files or directories.
files or subsequent lines off
files. pack, pcat,
files.
files. size: print
files.
files.
files. uaupd:
files.
filter for crt viewing.
filte~
filter.
filter reverse line-feeds.
find files. • ..•..
find: find files. • • • .

hyphen: find hyphenated words.
ttyname, isatty: find name of a terminal.

object library. lorder: find ordering relation for an
hashmake, speIIin, hash check: find spelling errors. spell, .

of the current user. ttyslot: find the slot in the utmp file
tee: pipe fitting. • . .

atof: convert ASCII string to floating-point number.
ecvt, fcvt, gcvt: convert floating-point number to/

/modf: manipulate parts of floating-point numbers. .
floor, ceiling, remainder'; floor, ceil, fmod, fabs:

floor, ceil, fmod, fabs: floor, ceiling, remainder,/
fc: copy floppy diskettes.

cflow: generate C flow graph.
fclose, mush: close or flush a stream.

remainder,/ floor, ceil, fmod, fabs: floor, ceiling,
font: font file format. • . . •

font: font file format.
cfont: convert fonts to ASCII and vice-versa.

stream. fopen, freopen, fdopen: open a
fork: create a new process.

forms. form: display and accept
adf: application data format.

ar: common archive file format. • • • • . • .
font: font file format.

pnch: file format for card images.
nroff or/ eqn, neqn, checkeq: format mathematical text for

newform: change the format of a text file. • .
inode: format of an inode.

core: format of core image file.

- 12 -

umask(l)
filehdr(4)
ferror(3S)
admin(l)
cat(l)
cmp(l)
comm(l)
cp(l)
diffmk(l)
filehdr(4)
find(l)
fspec(4)
ld(l)
lockf(3C)
rm(l)
paste(l)
pack(1)
pr(l)
size(l)
sort(l)
ua(4)
uaupd(1)
what(l)
more(l)
greek(l)
nl(l)
col(l)
find(l)
find(l)
hyphen(l)
ttyname(3C)
10rder(1)
speIl(l)
ttyslot(3C)
tee(l)
atof(3C)
ecvt(3C)
frexp(3C)
floor(3M)
floor(3M)
fC(l)
cflow(I)
fclose(3S)
floor(3M)
font(4)
font(4)
cfont(I)
fopen(3S)
fork(2)
form(3t)
adf(4)
ar(4)
font(4)
pnch(4)
eqn(l)
newform(l)
inode(4)
core(4)

cpio: format of cpio archive.
dir: format of directories. .

sccsfile: format of SCCS file.
file system: format of system volume.

phone: phone directory file format.
files. fspec: format specification in text

object file symbol table format. syms: common
troff. tbl: format tables for nroff or

nroff:
intro: introduction to file

wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert

/vfprintf, vsprintf: print
fprintf, sprintf: print

/ checkmm: print/check documents
mptx: the macro package for

mm: the MM macro package for
manual. man: macros for

shform: displays menus and
form: display and accept

formatted output. printf,
word on a/ putc, putchar,

stream. puts,
input/output.

memory allocator. malloc,
stream. fopen,

parts of floating-point/
land line number information

gets, fgets: get a string
rmdel: remove a delta

getopt: get option letter
read: read

nlist: get entries
getw: get character or word

getpw: get name
formatted input. scanf,

of file systems processed by
reposition a file pointer in/

text files.
stat,

pointer in a/ fseek, rewind,

error/ erf, erfc: error
and complementary error

gamma: log gamma
hypot: Euclidean distance

of a common object file
math err: error-handling

jO, j1, jn, yO, y1, yn: Bessel
logarithm, power, square root

remainder, absolute value
300, 300s: handle special

hp: handle special
terminal. 450: handle special

sinh, cosh, tanh: hyperbolic
atan, atan2: trigonometric

cursor motion. curses: screen
fread,

format text.
formats.
formats. utmp,
formatted input.
formatted output of a varargs/
formatted output. printf, • . .
formatted with the MM macros.
formatting a permuted index.
formatting documents. •
formatting entries in this
forms and returns user.
forms. . .••....
fprintf, sprintf: print . .
fputc, putw: put character or
fputs: put a string on a .
fread, fwrite: binary
free, realloc, calloc: main
freopen, fdopen: open a
frexp, ldexp, modf: manipulate
from a common object file.
from a stream.
from an SCCS file. . .
from argument vector.
from file.
from name list.
from stream. /getchar, fgetc,
from UID.
fscanf, sscanf: convert
fsck. checklist: list
fseek, rewind, ftell:
fspec: format specification in
fstat: get file status.
ftell: reposition a file
ftw: walk a file tree.
function and complementary
function. /error function
function.
function.
function. /line number entries
function. . •..•....
functions.
functions. /sqrt: exponential,
functions. /floor, ceiling, . .
functions of DASI 300 and 300s/
functions of HP 2640 and/
functions of the DASI 450
functions.
functions. /tan, asin, acos,
functions with "optimal" .
fwrite: binary input/output.

- 13 -

Permuted Index

cpio(4)
dir(4)
sccsfile(4)
fs(4)
phone(4)
fspec(4)
syms(4)
tbl(1)
nroff(l)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
printf(3S)
mm(1)
mptx(5)
mm(5)
man(5)
shform(1)
form(3t)
printf(3S)
putc(3S)
puts(3S)
fread(3S)
malloc(3C)
fopen(3S)
frexp(3C)
strip(1)
gets(3S)
rmdel(1)
getopt(3C)
read(2)
nlist(3C)
getc(3S)
getpw(3C)
scanf(3S)
checklist(4)
fseek(3S)
fspec(4)
stat(2)
fseek(3S)
ftw(3C)
erf(3M)
erf(3M)
gamma(3M)
hypot(3M)
Idlread(3X)
matherr(3M)
bessel(3M)
exp(3M)
floor(3M)
300(1)
hp(1)
450(1)
sinh(3M)
trig(3M)
curses(3)
fread(3S)

Permuted Index

gamma: log gamma function.
gamma: log gamma function.

number to string. ecvt, fcvt, gcvt: convert floating-point
abort: generate an lOT fault. .
cflow: generate C flow graph. .

reference. cxref: generate C program cross
crypt, setkey, encrypt: generate DES encryption.

makekey: generate encryption key.
terminal. ctermid: generate file name for
lexical tasks. lex: generate programs for simple

/srand48, seed48, Icong48: generate uniformly distributed/
srand: simple random-number generator. rand,

gets, fgets: get a string from a stream.
get: get a version of an SCCS file.

status file/ getpent, endpent: get and clean up printer
ulimit: get and set user limits. . .

the user. cuserid: get character login name of
getc, getchar, fgetc, getw: get character or word from/

nlist: get entries from name list.
urn ask: set and get file creation mask.

stat, fstat: get file status.
ustat: get file system statistics.

file. get: get a version of an SCCS
/getgrnam, setgrent, endgrent: get group file entry.

getlogin: get login name.
logname: get login name.

msgget: get message queue.
getpw: get name from UID.

system. uname: get name of current UNIX
unget: undo a previous get of an SCCS file.

argument vector. getopt: get option letter from
/getpwnam, setpwent, endpwent: get password file entry.

working directory. getcwd: get path-name of current
times. times: get process and child process

and/ getpid, getpgrp, getppid: get process, process group,
/geteuid, getgid, getegid: get real user, effective user,/

semget: get set of semaphores.
shmget: get shared memory segment.

tty: get the terminal's name.
time: get time.

get character or word from/ getc, getchar, fgetc, getw:
character or word from/ getc, getchar, fgetc, getw: get

current working directory. getcwd: get path-name of
getuid, geteuid, getgid, getegid: get real user,/ •

environment name. getenv: return value for
real user, effective/ getuid, geteuid, getgid, getegid: get

user,/ getuid, geteuid, getgid, getegid: get real
setgrent, endgrent: get group/ getgrent, getgrgid, getgrnam,

endgrent: get group/ getgrent, getgrgid, getgrnam, setgrent,
get group/ getgrent, getgrgid, getgrnam, setgrent, endgrent:

getlogin: get login name.
argument vector. getopt: get option letter from

getopt: parse command options.
get pass: read a password. . .

clean up printer status file/ getpent, endpent: get and
process group, and/ getpid, getpgrp, getppid: get process,
process, process group, and/ getpid, getpgrp, getppid: get

group, and/ getpid, getpgrp, getppid: get process, process

- 14 -

gamma(3M)
gamma(3M)
ecvt(3C)
abort(3C)
cflow(l)
cxref(l)
crypt(3C)
makekey(1)
ctermid(3S)
lex(l)
drand48(3C)
rand(3C)
gets(3S)
get (1)
getpent(3)
ulimit(2)
cuserid(3S)
getc(3S)
nlist(3C)
umask(2)
stat (2)
ustat(2)
get(l)
getgrent(3C)
getlogin(3C)
logname(l)
msgget(2)
getpw(3C)
uname(2)
unget(l)
getopt(3C)
getpwent(3C)
getcwd(3C)
times(2)
getpid(2)
getuid(2)
semget(2)
shmget(2)
tty(l)
time(2)
getc(3S)
getc(3S)
getcwd(3C)
getuid(2)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
(3C)
getlogin(3C)
getopt(3C)
getopt(l)
getpass(3C)
getpent(3)
getpid(2)
getpid(2)
getpid(2)

getpw: get name from UID. . .
setpwent, endpwent: get/ getpwent, getpwuid, getpwnam,
get/ getpwent, getpwuid, getpwnam, setpwent, endpwent:
endpwent: get/ getpwent, getpwuid, getpwnam, setpwent,

a stream. gets, fgets: get a string from
and terminal settings used by getty. gettydefs: speed . . .

settings used by getty. gettydefs: speed and terminal
getegid: get real user,! getuid, geteuid, getgid, . .

pututline, setutent,! getutent, getutid, getutline,
setutent, endutent,/ getutent, getutid, getutline, pututline,

setutent,/ getutent, getutid, getutline, pututline,
from/ getc, getchar, fgetc, getw: get character or word
convert/ ctime, localtime, gmtime, asctime, tzset:
setjmp, longjmp: non-local goto•..

cflow: generate C flow graph. • • . .
TTY-37 type-box. greek: graphics for the extended

mvt: typeset documents, view graphs, and slides. mmt,
extended TIY-37 type-box. greek: graphics for the

greek: select terminal filter.
file for a pattern. grep, egrep, fgrep: search a
file for a pattern. grep, egrep, fgrep: search a

/user, effective user, real group, and effective group/
/ getppid: get process, process group, and parent process IDs.

chown, chgrp: change owner or group. • . . • . • • . . .
setgrent, endgrent: get group file entry. /getgrnam,

group: group file.
group: group file.

setpgrp: set process group ID. . • • •
id: print user and group IDs and names.

real group, and effective group IDs. /effective user,
setuid, setgid: set user and group IDs.

newgrp: log in to a new group.
chown: change owner and group oC a file.
a signal to a process or a group of processes. /send

update, and regenerate groups of programs. /maintain,
ssignal, gsignal: software signals.

DASI 300 and 300s/ 300, 300s: handle special Cunctions of
2640 and 2621-series/ hp: handle special Cunctions of HP

the DASI 450 terminal. 450: handle special Cunctions of
varargs: handle variable argument list.

nohup: run a command immune to hangups and quits. . . • .
hcreate, hdestroy: manage hash search tables. hsearch,

spell, hashmake, spellin, hashcheck: find spelling/
find spelling errors. spell, hashmake, spellin, hash check:

search tables. hsearch, hcreate, hdestroy: manage hash
tables. hsearch, hcreate, hdestroy: manage hash search

file. scnhdr: section header Cor a common object
files. filehdr: file header for common object

file. ldfhread: read the file header of a common object
/seek to the optional file header oC a common object/

/read an indexed/named section header oC a common object/
ldahread: read the archive header oC a member oC ani

help: ask for help.
help: ask for help.

message: display error and help messages.
message: display error and help messages.

uahelp: user agent help process.
handle special functions oC HP 2640 and 2621-series/ hp:

- 15 -

Permuted Index

getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)
gets(3S)
gettydeCs(4)
gettydefs(4)
getuid(2)
getut(3C)
getut(3C)
getut(3C)
getc(3S)
ctime(3C)
setjmp(3C)
cflow(1)
greek(5)
mmt(1)
greek(5)
greek(1)
grep(1)
grep.1.new
getuid(2)
getpid(2)
chown(1)
getgrent(3C)
group (4)
group(4)
setpgrp(2)
id(1)
getuid(2)
setuid(2)
newgrp(1)
chown(2)
kill(2)
make(1)
ssignal(3C)
300(1)
hp(1)
450(1)
varargs(5)
nohup(1)
hsearch(3C)
spell(l)
spell(1)
hsearch(3C)
hsearch(3C)
scnhdr(4)
filehdr(4)
Idfhread(3X)
Idohseek(3X)
Idshread(3X)
Idahread(3X)
help(1)
help(1)
message(l)
message(3t)
uahelp(l)
hp(l)

Permuted Index

of HP 2640 and 2621-series/ hp: handle special functions
manage hash search tables. hsearch, hcreate, hdestroy:

sinh, cosh, tanh: hyperbolic functions. . . .
hyphen: find hyphenated words.

hyphen: find hyphenated words.
function. hypot: Euclidean distance

semaphore set or shared memory id. /remove a message queue,
and names. id: print user and group IDs

setpgrp: set process group ID.•.
issue: issue identification file.

what: identify SCCS files.
id: print user and group IDs and names.

group, and parent process IDs. /get process, process
group, and effective group IDs. /effective user, real
setgid: set user and group IDs. setuid,

core: format of core image file. ..•...
pnch: file format for card images. ..•...

nohup: run a command immune to hangups and quits.
long numeric data in a machine independent fashion. /access

for formatting a permuted index. /the macro package •
of a/ ldtbindex: compute the index of a symbol table entry

ptx: permuted index. ...•••....
a common/ ldtbread: read an indexed symbol table entry of

ldshread, ldnshread: read an indexed/named section header/
ldsseek, ldnsseek: seek to an indexed/named section of a/

inittab: script for the init process. •
process. popen, pclose: initiate pipe to/from a •

process. inittab: script for the init
inode: format of an inode.

inode: format of an inode.
sscanf: convert formatted
push character back into

fread, fwrite: binary
stdio: standard buffered

fileno: stream status
uustat: uucp status

abs: return
/164a: convert between long
atol, atoi: convert string to

/ltoI3: convert between 3-byte
3-byte integers and long

characters. asa:
pipe: create an

facilities/ ipcs: report
package. stdipc: standard

suspend execution for an
sleep: suspend execution for
commands and application/

formats.
miscellany.

subroutines and libraries.
calls and error numbers.

application programs. intro:
intro:
intro:

and libraries. intro:
and error numbers. intro:

input. scanf, fscanf, .
input stream. ungetc:
input/output.
input/output package.
inquiries. /feof, clearerr,
inquiry and job control.
integer absolute value.
integer and base-64 ASCII/
integer. strtol,
integers and long integers.
in tegers. / convert between
interpret ASA carriage control
interprocess channel.
inter-process communication
interprocess communication
interval. sleep:
interval.
intro: introduction to
intro: introduction to file
intro: introduction to
intro: introduction to
intro: introduction to system
introduction to commands and
introduction to file formats.
introduction to miscellany.
introduction to subroutines
introduction to system calls
ioctl: control device. . . .

- 16 -

hp(l)
hsearch(3C)
sinh(3M)
hyphen(l)
hyphen(l)
hypot(3M)
ipcrm(l)
id(1)
setpgrp(2)
issue(4)
what(l)
id(l)
getpid(2)
getuid(2)
setuid(2)
core(4)
pnch(4)
nohup(1)
sputl(3X)
mptx(5)
Idtbindex(3X)
ptx(l)
Idtbread(3X)
Idshread(3X)
Idsseek(3X)
inittab(4)
popen(3S)
inittab(4)
inode(4)
inode(4)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
fe rror (3S)
uustat(lC)
abs(3C)
a641(3C)
strtol(3C)
13tol(3C)
13tol(3C)
asa(l)
pipe(2)
ipcs(1)
stdipc(3C)
sleep(l)
sleep(3C)
intro(l)
intro(4)
intro(5)
intro(3)
intro(2)
intro(1)
intro(4)
intro(5)
intro(3)
intro(2)
ioctl(2)

abort: generate an
semaphore set or shared/
communication facilities/
/islower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,/
/isprint, isgraph, iscntrl,

terminal. ttyname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,

isalnum,/ isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,

system:
issue:

file.
isxdigit, isalnum,/ isalpha,

/isupper, islower, isdigit,
functions.

functions. jO,
functions. jO, j 1,

operator.
/lrand48, nrand48, mrand48,

makekey: generate encryption
process or a group off

lOT fault.
ipcrm: remove a message queue,
ipcs: report inter-process
isalnum, isspace, ispunct,/
isalpha, is upper, islower,
is ascii: classify characters.
isatty: find name of a
iscntrl, isascii: classify / .
is digit, isxdigit, isalnum,/
isgraph, iscntrl, isascii:/
islower, isdigit, isxdigit,
isprint, isgraph, iscntrl,/
ispunct, isprint, isgraph,/
isspace, ispunct, isprint,/
issue a shell command. .
issue identification file. .
issue: issue identification
isupper, islower, isdigit,
isxdigit, isalnum, isspace,/
jO, jl, jn, yO, yl, yn: Bessel
jl, jn, yO, yl, yn: Bessel
jn, yO, yl, yn: Bessel . . .
join: relational database
jrand48, srand48, seed48,/
key.•
kill: send a signal to a
kill: terminate a process.

programming. ksh: Korn shell command . .
programming. ksh: Korn shell command

3-byte integers and long/ 13tol, Itol3: convert between
integer and base-64/ a641, 164a: convert between long

scanning and processing language. awk: pattern
arbitrary-precision arithmetic language. bc: . •

cpp: the C language preprocessor.
command programming language. /standard/restricted

/jrand48, srand48, seed48, Icong48: generate uniformly /
object files. ld: link editor for common

object file. ldclose, ldaclose: close a common . .
header of a member of ani ldahread: read the archive

file for reading. ldopen, ldaopen: open a common object
common object file. ldclose, ldaclose: close a

of floating-point/ frexp, ldexp, modf: manipulate parts
access routines. ldfcn: common object file . .

of a common object file. ldfhread: read the file header
line number entries/ ldlread, ldlinit, ldlitem: manipulate

number/ ldlread, ldlinit, ldlitem: manipulate line
manipulate line number/ ldlread, ldlinit, ldlitem: . .

number entries of a section/ ldlseek,ldnlseek: seek to line
entries of a section/ ldrseek, ldnrseek: seek to relocation

indexed/named/ ldshread, ldnshread: read an
indexed/named/ ldsseek, ldnsseek: seek to an
file header of a common/ ldohseek: seek to the optional

object file for reading. ldopen, ldaopen: open a common
relocation entries of a/ ldrseek, ldnrseek: seek to .

indexed/named section header/ ldshread, ldnshread: read an
indexed/named section of a/ ldsseek, ldnsseek: seek to an
of a symbol table entry of a/ ldtbindex: compute the index

symbol table entry of a/ ldtbread: read an indexed . .

- 17 -

Permuted Index

abort(3C)
ipcrm(l)
ipcs(1)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3S)
issue(4)
issue(4)
ctype(3C)
ctype(3C)
bessel(3M)
bessel(3M)
bessel(3M)
join(l)
drand48(3C)
makekeY(l)
kill (2)
kill(l)
ksh(l)
ksh(l)
13tol(3C)
a641(3C)
awk(l)
bc(l)
cpp(l)
sh(l)
drand48(3C)
ld(l)
Idclose(3X)
Idahread(3X)
Idopen(3X)
Idclose(3X)
frexp(3C)
Idfcn(4)
Idfhread(3X)
Idlread(3X)
Idlread(3X)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idohseek(3X)
Idopen(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)

Permuted Index

table of a common object/ Idtbseek: seek to the symbol
getopt: get option letter from argument vector.

simple lexical tasks. lex: generate programs for
generate programs for simple lexical tasks. lex:

to subroutines and libraries. /introduction
relation for an object library. /find ordering

portable/ ar: archive and library maintainer for
terminal access,. tam: a library of calls that supports

shlib: shared library. • • • .
ulimit: get and set user limits. • . • . .

an out-going terminal line connection. /establish
line: read one line. • • . • •

common object file. linen urn: line number entries in a
/ldlinit, ldlitem: manipulate line number entries of a/

ldlseek,ldnlseek: seek to line number entries of a/
strip: strip symbol and line number information from a/

nl: line numbering filter .•
out selected fields of each line of a file. cut: cut

send/cancel requests to an LP line printer. lp, cancel:
line: read one line. • •

lsearch: linear search and update.
col: filter reverse line-feeds. .••...

in a common object file. linen urn: line number entries
files. comm: select or reject lines common to two sorted

head: give first few lines. ...•...•.•
uniq: report repeated lines in a file. • • • . . • •

of several files or subsequent lines of one file. /same lines
subsequent/ paste: merge same lines of several files or

files. ld: link editor for common object
a.out: common assembler and link editor output.

link: link to a file.
cp, In, mv: copy, link or move files.

link: link to a file.
lint: a C program checker.

Is: list contents of directory.
nlist: get entries from name list. •••••.•...

nm: print name list of common object file.
by fsck. checklist: list of file systems processed

handle variable argument list. varargs: ..•.•.
output of a varargs argument list. /print formatted

xargs: construct argument list(s) and execute command.
files. cp, In, my: copy, link or move

tzset: convert date/ ctime, localtime, gmtime, asctime,
command. path: locate executable file for

end, etext, edata: last locations in program.
memory. plock: lock process, text, or data in

files. lockf: record locking on
regions of a file. locking: exclusive access to

lockf: record locking on files.
gamma: log gamma function. •
newgrp: log in to a new group.

exponential, logarithm,/ exp, log, loglO, pow, sqrt: .
logarithm, power,/ exp, log, loglO, pow, sqrt: exponential,

/loglO, pow, sqrt: exponential, logarithm, power, square root/
getlogin: get login name. • . . . •
logname: get login name. • • . . .

cuserid: get character login name of the user.
logname: return login name of user.

- 18 -

Idtbseek(3X)
getopt(3C)
lex(l)
lex(l)
intro(3)
lorder(l)
ar(l)
tam(3t)
shlib(4)
ulimit(2)
dial(3C)
line(l)
linenum(4)
Idlread(3X)
Idlseek(3X)
strip(1)
nl(l)
cut(l)
Ip(l)
line(l)
Isearch(3C)
col(l)
linenum(4)
comm{l)
head(1)
uniq(l)
paste(l)
paste(l)
Id(l)
a.out(4)
link(2)
cp(l)
link(2)
lint(l)
Is(1)
nlist(3C)
nm(l)
checklist(4)
varargs(5)
vprintf(3S)
xargs(l)
cp(l)
ctime{3C)
path(l)
end(3C)
plock(2)
lockf(3C)
locking(2)
lockf(3C)
gamma(3M)
newgrp(l)
exp(3M)
exp(3M)
exp(3M)
getlogin(3C)
logname(l)
cuserid(3S)
logname(3X)

passwd: change login password.
setting up an environment at login time. profile:

logname: get login name.
user. logname: return login name of

a641, 164a: convert between long integer and base-64 ASCII/
between 3-byte integers and long integers. /lto13: convert

sputl, sgetl: access long numeric data in a machine/
setjmp, longjmp: non-local goto.

for an object library. lorder: find ordering relation
nice: run a command at low priority.
requests to an LP line/ Ip, cancel: send/cancel . .

send/ cancel requests to an LP line printer. Ip, cancel:
disable: enable/disable LP printers. enable, .

lpstat: print LP status information. . .
information. Ipstat: print LP status

jrand48,/ drand48, erand48, lrand48, nrand48, mrand48,
directory. Is: list contents of . • . .

update. Isearch: linear search and .
pointer. Iseek: move read/write file

integers and long/ 13tol, lto13: convert between 3-byte
m4: macro processor.

/access long numeric data in a machine independent fashion.
permuted index. mptx: the macro package for formatting a

documents. mm: the 11M: macro package for formatting
m4: macro processor.

in this manual. man: macros for formatting entries
formatted with the 11M: macros. /print/check documents

send mail to users or read mail. mail, rmail:
users or read mail. mail, rmail: send mail to

mail, rmail: send mail to users or read mail.
malloc, free, realloc, caHoc: main memory allocator.

regenerate groups off make: maintain, update, and
ar: archive and library maintainer for portable/

SCCS file. delta: make a delta (change) to an
mkdir: make a directory.

or ordinary file. mknod: make a directory, or a special
mktemp: make a unique file name. . .

regenerate groups off make: maintain, update, and
banner: make posters.

key. makekey: generate encryption
main memory allocator. malloc, free, realloc, caHoc:

entries in this manual. man: macros for formatting
/tfind, tdelete, twalk: manage binary search trees.

hsearch, hcreate, hdestroy: manage hash search tables.
send a message to the status manager. eprintf:
of/ Idlread, Idlinit, Idlitem: manipulate line number entries

frexp, Idexp, modf: manipulate parts of/ . . .
for formatting entries in this manual. man: macros

ascii: map of ASCII character set.
files. diffmk: mark differences between

umask: set file-creation mode mask.•
set and get file creation mask. umask:

table. master: master device information
information table. master: master device

regular expression compile and match routines. regexp:
eqn, neqn, checkeq: format mathematical text for nroff or/

function. matherr: error-handling
memcpy, memset: memory/ memccpy, memchr, memcmp, .

- 19 -

Permuted Index

passwd(l)
profile(4)
10gname(1)
10gname(3X)
a641(3C)
13tol(3C)
sputl(3X)
setjmp(3C)
10rder(1)
nice(l)
Ip(l)
Ip(l)
enable(l)
Ipstat(l)
Ipstat(l)
drand48(3C)
Is(l)
lsearch(3C)
Iseek(2)
13tol(3C)
m4(1)
sputl(3X)
mptx(5)
mm(5)
m4(1)
man(5)
mm(l)
mail(l)
mail(l)
mail(l)
malloc(3C)
make(l)
ar(l)
delta(l)
mkdir(l)
mknod(2)
mktemp(3C)
make(l)
banner(l)
makekey(l)
malloc(3C)
man(5)
tsearch(3C)
hsearch(3C)
eprintf(3t)
Idlread(3X)
frexp(3C)
man (5)
ascii(5)
diffmk(l)
umask(l)
umask(2)
master(4)
master(4)
regexp(5)
eqn(l)
matherr(3M)
memory(3C)

Permuted Index

memset: memory/ memccpy, memchr, memcmp, memcpy,
operations. memccpy, memchr, memcmp, memcpy, memset: memory

memccpy, memchr, memcmp, memcpy, memset: memory/
free, realloc, calloc: main memory allocator. malloc,

shmctl: shared memory control operations.
queue, semaphore set or shared memory id. /remove a message

memcmp, memcpy, memset: memory operations. /memchr,
shmop: shared memory operations.

lock process, text, or data in memory. plock: . •
shmget: get shared memory segment.

/memchr, memcmp, memcpy, memset: memory operations.
menus. menu: display and accept . .

user. shform: displays menus and forms and returns
menu: display and accept menus. • . • • . . • • .

sort: sort and/or merge files. . . • • • • .
files or subsequent/ paste: merge same lines of several

mesg: permit or deny messages.
msgctl: message control operations.

help messages. message: display error and
help messages. message: display error and

msgop: message operations.
msgget: get message queue.

or shared/ ipcrm: remove a message queue, semaphore set
eprintf: send a message to the status manager.

mesg: permit or deny messages.
display error and help messages. message:
display error and help messages. message:
sys_nerr: system error messages. /errno, sys_errlist,

mkdir: make a directory.
special or ordinary file. mknod: make a directory, or a

name. mktemp: make a unique file
formatting documents. mm: the MM macro package for . . .

documents formatted with the MM macros. /print/check
documents formatted with the/ mm, osdd, checkmm: print/check

formatting documents. mm: the MM macro package for
view graphs, and slides. mmt, mvt: typeset documents,

table. mnttab: mounted file system
chmod: change mode.

umask: set file-creation mode mask. . . . •
chmod: change mode of file. •••....

modemcap: modem capability data base.
data base. modemcap: modem capability

tset: set terminal modes. • . • • . . • . .
floating-point/ frexp, ldexp, modf: manipulate parts of

touch: update access and modification times of a file.
utime: set file access and modification times.

profile. monitor: prepare execution
filter for crt viewing. more, page: file perusal .

with "optimal" cursor motion. /screen functions
track: track mouse motion.•..

mount: mount a file system.
mount: mount a file system.

mnttab: mounted file system table.
track: track mouse motion.

cp, In, my: copy, link or move files.
lseek: move read/write file pointer.

formatting a permuted index. mptx: the macro package for
/erand48, lrand48, nrand48, . mrand48, jrand48, srand48,j

- 20 -

memory(3C)
memory(3C)
memory(3C)
malloc(3C)
shmctl(2)
ipcrm(l)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
menu(3t)
shform(l)
menu(3t)
sort(l)
paste(l)
mesg(1)
msgctl(2)
message(l)
message(3t)
msgop(2)
msgget(2)
ipcrm(1)
eprintf(3t)
mesg(1)
message(l)
message(3t)
perror(3C)
mkdir(l)
mknod(2)
mktemp(3C)
mm(5)
mm(1)
mm(l)
mm(5)
mmt(1)
mnttab(4)
chmod(l)
umask(l)
chmod(2)
modemcap(5)
modemcap(5)
tset(l)
frexp(3C)
touch{l)
utime(2)
monitor(3C)
more(l)
curses(3)
track(3t)
mount(2)
mount(2)
mnttab(4)
track(3t)
cp(l)
Iseek(2)
mptx(5)
drand48(3C)

Permuted Index

operations. msgctl: message control msgctl(2)
msgget: get message queue. msgget(2)
msgop: message operations. msgop(2)

cp, In, mv: copy, link or move files. cp(l)
graphs, and slides. mmt, mvt: typeset documents, view mmt(l)

mathematical text fori eqn, neqn, checkeq: format eqn(l)
definitions for eqn and neqn. /special character eqnchar(5)

a text file. newform: change the format of newform(l)
newgrp: log in to a new group. newgrp(l)

process. nice: change priority of a nice(2)
priority. nice: run a command at low nice(l)

nl: line numbering filter. nl(l)
list. nlist: get entries from name nlist(3C)

object file. nm: print name list of common nm(l)
hangups and quits. nohup: run a command immune to nohup(l)

setjmp, longjmp: non-local goto. setjmp(3C)
drand48, erand48, Irand48, nrand48, mrand48, jrand48,/ drand48(3C)

nroff: format text. nroff(l)
format mathematical text for nroff or troff. / checkeq: eqn(l)

tbl: format tables for nroff or troff. tbl(l}
constructs. deroff: remove nroff/troff, tbl, and eqn deroff(l)

nl: line numbering filter. nl(l)
sputl, sgetl: access long numeric data in a machine/ sputl(3X)

ldfcn: common object file access routines. Idfcn(4}
dump selected parts of an object file. dump: dump(l)

ldopen, ldaopen: open a common object file for reading. Idopen(3X}
number entries of a common object file function. /line Idlread(3X)

ldaclose: close a common object file. ldclose, Idclose(3X)
the file header of a common object file. ldfhread: read Idfhread(3X}

of a section of a common object file. /number entries Idlseek(3X}
file header of a common object file. Ito the optional Idohseek(3X}

of a section of a common object file. /entries Idrseek(3X}
section header of a common object file. /indexed/named Idshread(3X}

section of a common object file. /indexed/named Idsseek(3X}
symbol table entry of a common object file. /the index of a Idtbindex(3X)
symbol table entry of a common object file. /read an indexed Idtbread(3X)

the symbol table of a common object file. /seek to Idtbseek(3X)
number entries in a common object file. linenum: line linenum(4)

nm: print name list of common object file. nm(1}
information for a common object file. /relocation reloc(4}

section header for a common object file. scnhdr: scnhdr(4}
information from a common object file. land line number strip(l}

format. syms: common object file symbol table syms(4}
file header for common object files. filehdr: filehdr(4)

ld: link editor for common object files. ld(l)
print section sizes of common object files. size: size(l)

find ordering relation for an object library. lorder: lorder(l}
od: octal dump. od(l}

od: octal dump. od(l)
reading. ldopen, ldaopen: open a common object file for Idopen(3X)

fopen, freopen, fdopen: open a stream. fopen(3S}
dup: duplicate an open file descriptor. dup(2}

open: open for reading or writing. open(2}
writing. open: open for reading or open(2}

wrastop: pixel raster operations for bitmap/ wrastop(3t)
memcmp, memcpy, memset: memory operations. memccpy, memchr, memory(3C)

msgctl: message control operations. msgctl(2)
msgop: message operations. msgop(2)

- 21 -

Permuted Index

semctl: semaphore control operations.
semop: semaphore operations.

shmctl: shared memory control operations.
shmop: shared memory operations.

strcspn, strtok: string operations. /strpbrk, strspn,
join: relational database operator. • . .

curses: screen functions with "optimal" cursor motion. .
vector. getopt: get option letter from argument

common/ ldohseek: seek to the optional file header of a
fcntl: file control options.•.

stty: set the options for a terminal.
getopt: parse command options. •...•.

object library. lorder: find ordering relation for an
a directory, or a special or ordinary file. mknod: make

editor based/ vi, view: screen oriented (visual) display
documents formatted with/ mm, osdd, checkmm: print/check

dial: establish an out-going terminal line/
assembler and link editor output. a.out: common

/vsprintf: print formatted output of a varargs argument/
sprintf: print formatted output. printf, fprintf, .

chown: change owner and group of a file.
chown, chgrp: change owner or group.

and expand files. pack, pcat, unpack: compress
permuted/ mptx: the macro package for formatting a

documents. mm: the MM: macro package for formatting .
standard buffered input/output package. stdio:

interprocess communication package. stdipc: standard
crt viewing. more, page: file perusal filter for

4014 terminal. 4014: paginator for the Tektronix
process, process group, and parent process IDs. /get

getopt: parse command options.
passwd: change login password.
passwd: password file.

/setpwent, endpwent: get password file entry.
putpwent: write password file entry.

passwd: password file.
getpass: read a password.

passwd: change login password.
paste: paste buffer utilities.

several files or subsequent/ paste: merge same lines of
paste: paste buffer utilities.

for command. path: locate executable file
dirname: deliver portions of path names. basename,

directory. getcwd: get path-name of current working
fgrep: search a file for a pattern. grep, egrep,
fgrep: search a file for a pattern. grep, egrep, . . .

processing language. awk: pattern scanning and • • •
signal. pause: suspend process until

expand files. pack, pcat, unpack: compress and
a process. popen, pclose: initiate pipe to/from

mesg: permit or deny messages. .
macro package for formatting a permuted index. mptx: the

ptx: permuted index. • . • .
sys_nerr: system error/ perror, errno, sys_errlist,

viewing. more, page: file perusal filter for crt
phone: phone directory file format.

format. phone: phone directory file
tc: phototypesetter simulator.

- 22 -

semctl(2)
semop(2)
shmctl(2)
shmop(2)
string(3C)
join(1)
curses(3)
getopt(3C)
Idohseek(3X)
fcntl(5)
sttY(l)
getopt(l)
lorder(l)
mknod(2)
vi(1)
mm(l)
dial(3C)
a.out(4)
vprintf(3S)
printf(3S)
chown(2)
chown(l)
pack(l)
mptx(5)
mm(5)
stdio(3S)
stdipc(3C)
more(l)
4014(1)
getpid(2)
getopt(1)
passwd(l)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(l)
paste(3t)
paste(1)
paste(3t)
path(l)
basename(1)
getcwd(3C)
grep(l)
grep.1.new
awk(l)
pause(2)
pack(l)
popen(3S)
mesg(l)
mptx(5)
ptx(l)
perror(3C)
more(l)
phone(4)
phone(4)
tc(l)

split: split a file into
channel.

tee:
popen, pelose: initiate

bitmap displays. wrastop:
wind: creates and
data in memory.

images.
!tell: reposition a file

lseek: move read/write file
to/Crom a process.

and library maintainer Cor
basename, dirname: deliver

banner: make
logarithm,/ exp, log, loglO,

/sqrt: exponential, logarithm,

Cor troff. cw, checkcw:

pieces. . . • . . . • • •
pipe: create an interprocess
pipe fitting. • . . • . •
pipe to/Crom a process. •
pixel raster operations Cor
places a window.
plock: lock process, text, or
pnch: file Cormat for card .
pointer in a stream. /rewind,
pointer. ••..
popen, pelose: initiate pipe
portable archives. /archive
portions of path names.
posters.
pow, sqrt: exponential,
power, square root Cunctions.
pr: print files. • . . • . •
prepare constant-width text

monitor: prepare execution profile. .
cpp: the e language preprocessor. •.•..•

unget: undo a previous get of an sees file.
types: primitive system data types.

prs: print an sees file.
date: print and set the date.

cal: print calendar.
of a file. sum: print checksum and block count

editing activity. sact: print current sees file
cat: concatenate and print files.

pr: print files.
vprintC, vfprintC, vsprintf: print formatted output of a/

printf, fprintf, sprintf: print formatted output.
lpstat: print LP status information.

object file. nm: print name list of common
system. uname: print name of current UNIX

object files. size: print section sizes of common
names. id: print user and group IDs and

formatted/ mm, osdd, checkmm: print/check documents ..•
requests to an LP line printer. /cancel: send/cancel

/endpent: get and clean up printer status file entries.
disable: enable/disable LP printers. enable,

print formatted output. printf, fprintf, sprintf:
nice: run a command at low priority.

nice: change priority of a process. •
acct: enable or disable process accounting.

times. times: get process and child process
exit, _exit: terminate process. ••...•.

fork: create a new process. •...••.
/getpgrp, getppid: get process, process group, and parenti

setpgrp: set process group ID.
process group, and parent process IDs. /get process,
inittab: script for the init process.

kill: terminate a process.
nice: change priority of a process.

kill: send a signal to a process or a group of/
initiate pipe to/from a process. popen, pelose:

getpid, getpgrp, getppid: get process, process group, and/
ps: report process status.

memory. plock: lock process, text, or data in

- 23-

Permuted Index

split(l)
pipe(2)
tee(l)
popen(3S)
wrastop(3t)
wind(3t)
plock(2)
pnch(4)
fseek(3S)
Iseek(2)
popen(3S)
ar(l)
basename(l)
banner(l)
exp(3M)
exp(3M)
pr(l)
cW(l)
monitor(3e)
cpp(l)
unget(l)
types(5)
prs(l)
date(l)
cal(l)
sum(l)
sact(l)
cat(l)
pr(l)
vprintf(3S)
printf(3S)
lpstat(l)
nm(l)
uname(l)
size(l)
id(l)
mm(l)
lp(l)
getpent(3)
enable(l)
printf(3S)
nice(l)
nice(2)
acct(2)
times(2)
exit(2)
fork (2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
ki1l(l)
nice(2)
kill (2)
popen(3S)
getpid(2)
ps(l)
plock(2)

Permuted Index

times: get process and child process times. . • • • • . .
wait: wait for child process to stop or terminate.

ptrace: process trace. . . •
uahelp: user agent help process.

pause: suspend process until signal.
wait: await completion of process.

list of file systems processed by fsck. checklist:
to a process or a group of processes. /send a signal

awk: pattern .scanning and processing language. •
m4: macro processor.

alarm: set a process's alarm clock.
prof: display profile data.

profile. profil: execution time
prof: display profile data.

monitor: prepare execution profile. . . • . . .
profil: execution time profile. . ••.•.

environment at login time. profile: setting up an
ksh: Korn shell command programming. . • .

standard/restricted command programming language. /the
true, false: provide truth values. .

prs: print an SCCS file.
ps: report process status.

/generate uniformly distributed pseudo-random numbers.
ptrace: process trace. . .
ptx: permuted index. . .

stream. ungetc: push character back into input
put character or word on a/ putc, putchar, fputc, putw: . .

character or word on a/ putc, putchar, fputc, putw: put • . .
environment. putenv: change or add value to

entry. putpwent: write password file .
stream. puts, fputs: put a string on a

getutent, getutid, getutIine, pututline, setutent, endutent,j
a/ putc, putchar, fputc, putw: put character or word on

pwd: working directory name.
qsort: quicker sort. • . . • . •

msgget: get message queue. . • . . •
ipcrm: remove a message queue, semaphore set or shared/

qsort: quicker sort.
command immune to hangups and quits. nohup: run a

random-number generator. rand, srand: simple
rand, srand: simple random-number generator.

displays. wrastop: pixel raster operations for bitmap
getpass: read a password.

entry of a common/ ldtbread: read an indexed symbol table
header/ ldshread, ldnshread: read an indexed/named section

read: read from file. .
rmail: send mail to users or read mail. mail, . .

line: read one line. • . .
read: read from file.

member of ani ldahread: read the archive header of a
common object file. ldfhread: read the file header of a
open a common object file for reading. ldopen, ldaopen:

open: open for reading or writing. • . •
lseek: move read/write file pointer. .

allocator. maIIoc, free, reaIIoc, caIIoc: main memory
specify what to do upon receipt of a signal. signal:

lockf: record locking on files.
ed, red: text editor.

- 24 -

times(2)
wait(2)
ptrace(2)
uahelp(l)
p ause (2)
wait(l)
checklist(4)
kiII(2)
awk(l)
m4(1)
al arm (2)
prof(1)
profil(2)
prof(l)
monitor(3C)
profil(2)
profile(4)
ksh(l)
sh(l)
true(l)
prs(l)
ps(l)
drand48(3C)
ptrace(2)
ptx(l)
ungetc(3S)
putc(3S)
putc(3S)
putenv(3C)
putpwent(3C)
puts(3S)
getut(3C)
putc(3S)
pwd(l)
qsort(3C)
msgget(2)
ipcrm(l)
qsort(3C)
nohup(l)
rand(3C)
rand(3C)
wrastop(3t)
getpass(SC)
Idtbread(3X)
Idshread(3X)
read(2)
mail(l)
line(l)
read(2)
Idahread(3X)
Idfhread(3X)
Idopen(3X)
open(2)
Iseek(2)
maIIoc(3C)
sign al (2)
lockf(3C)
ed(1)

generate C program cross reference. cxref: •
execute regular expression. regcmp, regex: compile and

compile. regcmp: regular expression
make: maintain, update, and regenerate groups of programs.
regular expression. regcmp, regex: compile and execute
compile and match routines. regexp: regular expression

locking: exclusive access to regions of a file.
match routines. regexp: regular expression compile and

regcmp: regular expression compile.
regex: compile and execute regular expression. regcmp,

sorted files. comm: select or reject lines common to two
lorder: find ordering relation for an object/

join: relational database operator.
for a common object file. reloc: relocation information
ldrseek, ldnrseek: seek to relocation entries of a/ . .

common object file. reloc: relocation information for a
/fmod, fabs: floor, ceiling, remainder, absolute value/

for CP/M terminals. umodem: remote file transfer program
file. rmdel: remove a delta from an sces

semaphore set or/ ipcrm: remove a message queue,
unlink: remove directory entry.

rm, rmdir: remove files or directories.
eqn constructs. deroff: remove nroff/troff, tbl, and

uniq: report repeated lines in a file.
clock: report CPU time used.

communication/ ipcs: report inter-process
ps: report process status.

file. uniq: report repeated lines in a
stream. fseek, rewind, ftell: reposition a file pointer in a

lp, cancel: send/cancel requests to an LP line/ ..
abs: return integer absolute value.

logname: return login name of user.
name. getenv: return value for environment

stat: data returned by stat system call.
displays menus and forms and returns user. shform:

col: filter reverse line-feeds.
file pointer in a/ fseek, rewind, ftell: reposition a

creat: create a new file or rewrite an existing one. .
directories. rm, rmdir: remove files or

read mail. mail, rmail: send mail to users or
SCCS file. rmdel: remove a delta from an

directories. rm, rmdir: remove files or
chroot: change root directory.

logarithm, power, square root functions. /exponential,
common object file access routines. ldfcn:

expression compile and match routines. regexp: regular • .
standard/restricted/ sh, rsh: shell, the . . . • . • .

nice:
hangups and quits. nohup:

editing activity.
scrset: set screen

space allocation. brk,
formatted input.

bfs: big file
language. awk: pattern

the delta commentary of an
comb: combine

make a delta (change) to an

run a command at low priority.
run a command immune to
sact: print current SCCS file
save time. •
sbrk: change data segment
scanf, fscanf, sscanf: convert
scanner.
scanning and processing
SCCS delta. cdc: change
SCCS deltas.
secs file. delta:

- 25 -

Permuted Index

cxref(l)
regcmp(3X)
regcmp(l)
make(l)
regcmp(3X)
regexp(5)
locking(2)
regexp(5)
regcmp(1)
regcmp(3X)
comm(l)
lorder(l)
join(l)
reloc(4)
Idrseek(3X)
reloc(4)
floor(3M)
umodem(l)
rmdel(l)
ipcrm(l)
unlink(2)
rm(l)
deroff(l)
uniq(l)
clock(3C)
ipcs(1)
pS(l)
uniq(l)
fseek(3S)
lp(l)
abs(3C)
logname(3X)
getenv(3C)
stat (5)
shform(l)
col(l)
fseek(3S)
creat(2)
rm(l)
mail(1)
rmdel(l)
rm(1)
chroot(2)
exp(3M)
Idfcn(4)
regexp(5)
sh(l)
nice(l)
nohup(l)
sact(l)
scrset(l)
brk(2)
scanf(3S)
bfs(l)
awk(1)
cdc(l)
comb(l)
delta(l)

Permuted Index

sact: print current SCCS file editing activity.
get: get a version of an SCCS file.

prs: print an SCCS file.
rmdel: remove a delta from an SCCS file.

compare two versions of an SCCS file. sccsdiff:
sccsfile: format of SCCS file.

undo a previous get of an SCCS file. unget:
val: validate SCCS file.

admin: create and administer SCCS files.
what: identify SCCS files.

of an SCCS file. sccsdill': compare two versions
sccsfile: format of SCCS file.

common object file.
clear: clear terminal

"optimal" cursor/ curses:
display editor/ vi, view:

scrset: set
ted:

inittab:

program.
grep, egrep, fgrep:
grep, egrep, fgrep:

lsearch: linear
bsearch: binary

hcreate, hdestroy: manage hash
tdelete, twalk: manage binary

object file. scnhdr:
object/ /read an indexed/named

jto line number entries of a
Ito relocation entries of a

jseek to an indexed/named
files. size: print

/mrand48, jrand48, srand48,
section of/ ldsseek, ldnsseek:

a section/ ldlseek,ldnlseek:
a section/ .ldrseek, ldnrseek:

header of a common/ ldohseek:
common object file. ldtbseek:

shmget: get shared memory
brk, sbrk: change data

to two sorted files. comm:
greek:

of a file. cut: cut out
file. dump: dump

semctl:
semop:

ipcrm: remove a message queue,
semget: get set of

operations.

manager. eprintf:
a group of processes. kill:

mail. mail, rmail:
line printer. lp, cancel:

scnhdr: section header for a
screen. . •.••••
screen functions with
screen oriented (visual)
screen save time.
screen-oriented text editor.
script for the init process.
scrset: set screen save time.
sdb: symbolic debugger.
sdiff: side-by-side difference
search a file for a pattern.
search a file for a pattern.
search and update.
search. • •.•.•••
search tables. hsearch, •
search trees. tsearch, tfind,
section header for a common
section header of a common .
section of a common object/
section of a common object/
section of a common objectj
section sizes of common object
sed: stream editor. • . • .
seed48, Icong48: generate/
seek to an indexed/named
seek to line number entries of
seek to relocation entries of •
seek to the optional file
seek to the symbol table of a
segment.
segment space allocation. . .
select or reject lines common
select terminal filter. . • .
selected fields of each line
selected parts of an object
semaphore control operations.
semaphore operations.
semaphore set or shared memory /
semaphores. .•••.•.
semctl: semaphore control
semget: get set of semaphores.
semop: semaphore operations.
send a message to the status
send a signal to a process or
send mail to users or read
send/cancel requests to an LP

- 26-

sact(l)
get(l)
prs(l)
rmdel(l)
sccsdiff(1)
sccsfile(4)
unget(l)
val(l)
admin(l)
what(1)
sccsdiff(l)
sccsfile(4)
scnhdr(4)
clear(l)
curses(3)
vi(l)
scrset(l)
ted(l)
inittab(4)
scrset(l)
sdb(l)
sdiff(l)
grep(l)
grep.1.new
Isearch(3C)
bsearch(3C)
hsearch(3C)
tsearch(3C)
scnhdr(4)
Idshread(3X)
Idlseek(3X)
Idrseek(3X)
Idsseek(3X)
size(l)
sed(1)
drand48(3C)
Idsseek(3X)
Idlseek(3X)
Idrseek(3X)
Idohseek(3X)
Idtbseek(3X)
shmget(2)
brk(2)
comm(l)
greek(l)
cut(l)
dump(l)
semctl(2)
semop(2)
ipcrm(l)
semget(2)
semctl(2)
semget(2)
semop(2)
eprintf(3t)
ki11(2)
mail(l)
lp(l)

stream. setbuf: assign buffering to a .
IDs. setuid, setgid: set user and group . .

getgrent, getgrgid, getgrnam, setgrent, endgrent: get group/
goto. setjmp, longjmp: non-local

encryption. crypt, setkey, encrypt: generate DES
setpgrp: set process group ID.

getpwent, getpwuid, getpwnam, setpwent, endpwent: get/ • .
login time. profile: setting up an environment at

gettydefs: speed and terminal settings used by getty.
group IDs. setuid, setgid: set user and

/getutid, getutline, pututline, setutent, endutent, utmpname:/
data in a machine/ sputl, sgetl: access long numeric

standard/restricted command/ sh, rsh: shell, the
shlib: shared library.

operations. shmct1: shared memory control .
queue, semaphore set or shared memory id. /a message

shmop: shared memory operations.
shmget: get shared memory segment.

ksh: Korn shell command programming.
system: issue a shell command. •• • . . .

command programming/ sh, rsh: shell, the standard/restricted
forms and returns user. shform: displays menus and .

shlib: shared library.
operations. shmct1: shared memory control

segment. shmget: get shared memory
operations. shmop: shared memory

program. sdiff: side-by-side difference
pause: suspend process until signal. . • . • • • .

what to do upon receipt of a signal. signal: specify
upon receipt of a signal. signal: specify what to do

of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals. . • • • . . .

lex: generate programs for simple lexical tasks.
generator. rand, srand: simple random-number

tc: phototypesetter simulator.
atan, atan2: trigonometric/ sin, cos, tan, asin, acos,

functions. sinh, cosh, tanh: hyperbolic
common object files. size: print section sizes of .

size: print section sizes of common object files.
an interval. sleep: suspend execution for

interval. sleep: suspend execution for
documents, view graphs, and slides. mmt, mvt: typeset

current/ ttyslot: find the slot in the utmp file of the
ssignal, gsignal: software signals. . • .

sort: sort and/or merge files. • .
qsort: quicker sort. • . . • • .

sort: sort and/or merge files.
tsort: topological sort. . • . . . • . • .

or reject lines common to two sorted files. comm: select
brk, sbrk: change data segment space allocation. • • . .

fspec: format specification in text files.
receipt of a signal. signal: specify what to do upon
used by getty. gettydefs: speed and terminal settings
hashcheck: find spelling/ spell, hashmake, spellin,

spelling/ spell, hashmake, spellin, hashcheck: find . .
spellin, hash check: find spelling errors. /hashmake,

split: split a file into pieces.
csplit: context split. . • . •

- 27 -

Permuted Index

setbuf(3S)
setuid(2)
getgrent(3C)
setjmp(3C)
crypt(3C)
setpgrp(2)
getpwent(3C)
profile(4)
gettydefs(4)
setuid(2)
getut(3C)
sputl(3X)
sh(l)
shlib(4)
shmctl(2)
ipcrm(l)
shmop(2)
shmget(2)
ksh(l)
system(3S)
sh(l)
shform(l)
shlib(4)
shmctl(2)
shmget(2)
shmop(2)
sdiff(l)
pause(2)
signal(2)
signal(2)
kill (2)
ssignal(3C)
lex(l)
rand(3C)
tC(l)
trig(3M)
sinh(3M)
size(l)
size(l)
sleep(l)
sleep(3C)
mmt(l)
ttyslot(3C)
ssignal(3C)
sort(l)
qsort(3C)
sort(l)
tsort(l)
comm(l)
brk(2)
fspec(4)
sign al (2)
gettydefs(4)
spen(l)
spen(l)
spen(l)
split(l)
csplit(l)

Permuted Index

pieces. split: split a file into .
output. printf, fprintf, sprintf: print formatted

numeric data in a machine/ sputl, sgetl: access long
power,/ exp, log, loglO, pow, sqrt: exponential, logarithm,

exponential, logarithm, power, square root functions. /sqrt:
generator. rand, srand: simple random-number

/nrand48, mrand48, jrand48, srand48, seed48, Icong48:/
input. scanf, fscanf, sscanf: convert formatted . .

signals. ssignal, gsignal: software
package. stdio: standard buffered input/output

communication/ stdipc: standard interprocess
sh, rsh: shell, the standard/restricted command/

system call. stat: data returned by stat
stat, fstat: get file status.

stat: data returned by stat system call. • • . . .
ustat: get file system statistics. • . . • • . • .

get and clean up printer status file entries. /endpent:
lpstat: print LP status information.

feof, clearerr, fileno: stream status inquiries. ferror, . . .
control. uustat: uucp status inquiry and job

communication facilities status. /report inter-process
eprintf: send a message to the status manager.

ps: report process status.,
stat, fstat: get file status.

input/output package. stdio: standard buffered
communication package. stdipc: standard interprocess

stime: set time.
wait for child process to stop or terminate. wait:

strncmp, strcpy, strncpy,/ strcat, strncat, strcmp, •
/strcpy, strncpy, strlen, strchr, strrchr, strpbrk,j

strncpy,/ strcat, strncat, strcmp, strncmp, strcpy,
/strncat, strcmp, strncmp, strcpy, strncpy, strlen,j

/strrchr, strpbrk, strspn, strcspn, strtok: string/
sed: stream editor. .

mush: close or flush a stream. fclose,
fopen, freopen, fdopen: open a stream.

reposition a file pointer in a stream. fseek, rewind, ftell:
get character or word from stream. /getchar, fgetc, getw:

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setbuf: assign buffering to a

/feof, clearerr, fileno:
push character back into input
long integer and base-64 ASCII

convert date and time to
floating-point number to

gets, fgets: get a
puts, fputs: put a

strspn, strcspn, strtok:
number. strtod, atof: convert
number. atof: convert ASCII

strtol, atol, atoi: convert
number information from a/

information from a/ strip:
/strncmp, strcpy, strncpy,

strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,

stream. gets, •
stream. /putchar, fputc, putw:
stream.
stream.
stream status inquiries.
stream. ungetc: . . .
string. /164a: convert between
string. /asctime, tzset: . .
string. /fcvt, gcvt: convert
string from a stream.
string on a stream.
string operations. /strpbrk,
string to double-precision
string to floating-point
string to integer.
strip: strip symbol and line
strip symbol and line number
strlen, strchr, strrchr,/ . .
strncat, strcmp, strncmp, .
strncmp, strcpy, strncpy,/

- 28-

split(1)
printf(3S)
sputl(3X)
exp(3M)
exp(3M)
rand(3C)
drand48(3C)
scanf(3S)
ssignal(3C)
stdio(3S)
stdipc(3C)
sh(l)
stat(5)
stat(2)
stat (5)
ustat(2)
getpent(3)
Ipstat(1)
fe rror (3S)
uustat(lC)
ipcs(1)
eprintf(3t)
pS(I)
stat (2)
stdio(3S)
stdipc(3C)
stime(2)
wait (2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
sed(1)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
gets(3S)
putc(3S)
puts(3S)
setbuf(3S)
fe rror (3S)
ungetc(3S)
a641(3C)
ctime(3C)
ecvt(3C)
gets(3S)
puts(3S)
string(3C)
strtod(3C)
atof(3C)
strtol(3C)
strip (1)
strip(1)
string(3C)
string(3C)
string(3C)

/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ .
/strlen, strchr, strrchr, strpbrk, strspn, strcspn,/

/strncpy, strlen, strchr, strrchr, strpbrk, strspn,/
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/

to double-precision number. strtod, atof: convert string
/strpbrk, strspn, strcspn, strtok: string operations.

string to integer. strtol, atol, atoi: convert
terminal. stty: set the options for a

another user. su: become super-user or
intro: introduction to subroutines and libraries.

/same lines of several files or subsequent lines of one file.
count of a file. sum: print checksum and block

du: summarize disk usage.
sync: update the super block. .•.•••

sync: update super-block. ...•••
su: become super-user or another user.

tam: a library of calls that supports terminal access,.
interval. sleep: suspend execution for an
interval. sleep: suspend execution for

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. • . . • . . .
information from/ strip: strip symbol and line number

object/ /compute the index of a symbol table entry of a common
ldtbread: read an indexed symbol table entry of a common/
syms: common object file symbol table format. • . •

object/ ldtbseek: seek to the symbol table of a common
sdb: symbolic debugger.

symbol table format. syms: common object file .
sync: update super-block. .
sync: update the super block.

error/ perror, errno, sys_errlist, sys_nerr: system
Syslocal: local system calls. .

perror, errno, sys_errlist, sys_nerr: system error/ . . .
/compute the index of a symbol table entry of a common object/

file. /read an indexed symbol table entry of a common object
common object file symbol table format. syms:
master device information table. master: .•....

mnttab: mounted file system table. • . . • . .
ldtbseek: seek to the symbol table of a common object file.

tbl: format tables for nroff or troff. .
hdestroy: manage hash search tables. hsearch, hcreate,

tabs: set tabs on a terminal.
tabs: set tabs on a terminal.

a file. tail: deliver the last part of
supports terminal access,. tam: a library of calls that

trigonometric/ sin, cos, tan, asin, acos, atan, atan2:
sinh, cosh, tanh: hyperbolic functions.

tar: tape file archiver.
tar: tape file archiver.

programs for simple lexical tasks. lex: generate
deroff: remove nroff/troff, tbl, and eqn constructs.

or troff. tbl: format tables for nroff
tc: phototypesetter simulator.

search trees. tsearch, tfind, tdelete, twalk: manage binary
editor. ted: screen-oriented text

tee: pipe fitting. . . • .
4014: paginator for the Tektronix 4014 terminal.

- 29 -

Permuted Index

string(3C)
string(3C)
string(3C)
string(3C)
strtod(3C)
string(3C)
strtol(3C)
sttY(1)
su(1)
intro(3)
paste(1)
sum(1)
dU(1)
sync(1)
sync(2)
su(1)
tam(3t)
sleep(1)
sleep (3C)
pause(2)
swab (3C)
swab(3C)
strip(1)
Idtbindex(3X)
Idtbread(3X)
syms(4)
Idtbseek(3X)
sdb(1)
syms(4)
sync(2)
sync(1)
perror(3C)
syslocal(2)
perror(3C)
Idtbindex(3X)
Idtbread(3X)
syms(4)
master(4)
mnttab(4)
Idtbseek(3X)
tbl(1)
hsearch(3C)
tabs(1)
tabs(1)
tail(1)
tam(3t)
trig(3M)
sinh (3M)
tar(1)
tar(1)
lex(1)
deroff(1)
tbl(1)
tc(1)
tsearch(3C)
ted(1)
tee(1)
4014(1)

Permuted Index

temporary file. tmpnam, tempnam: create a name for a
tmpfile: create a temporary file.

tempnam: create a name for a temporary file. tmpnam, . .
terminals. term: conventional names for
data base. termcap: terminal capability

for the Tektronix 4014 terminal. 4014: paginator
functions of the DASI 450 terminal. 450: handle special

library of calls that supports terminal access,. tam: a
termcap: terminal capability data base.

generate file name for terminal. ctermid:
asyncJIlain: vt100, b513 terminal emulation program.

greek: select terminal filter.
dial: establish an out-going terminal line connection.

tset: set terminal modes.
clear: clear terminal screen.

getty. gettydefs: speed and terminal settings used by
stty: set the options for a terminal.

tabs: set tabs on a terminal.
isatty: find name of a terminal. ttyname,

functions of DASI 300 and 300s terminals. /handle special
of HP 2640 and 2621-series terminals. /special functions

tty: get the terminal's name.
term: conventional names for terminals.

file transfer program for CP 1M terminals. umodem: remote
kill: terminate a process.

exit, _exit: terminate process. . . .
for child process to stop or terminate. wait: wait

command. test: condition evaluation
ed, red: text editor.
ex, edit: text editor. . . .

ted: screen-oriented text editor. . . .
change the format of a text file. new form:

fspec: format specification in text files.
/checkeq: format mathematical text for nroff or troff.

prepare constant-width text for troff. cw, checkcw:
nroff: format text. •

plock: lock process, text, or data in memory.
binary search trees. tsearch, tfind, tdelete, twalk: manage

time: time a command.
time: get time.

profil: execution time profile.
up an environment at login time. profile: setting

scrset: set screen save time.
stime: set time.

time: time a command.
time: get time.

tzset: convert date and time to string. /asctime,
clock: report CPU time used. ...•..

process times. times: get process and child
update access and modification times of a file. touch:

get process and child process times. times:
file access and modification times. utime: set

file. tmpfile: create a temporary
for a temporary file. tmpnam, tempnam: create a name

/tolower, _toupper, _tolower, toascii: translate characters.
popen, pelose: initiate pipe to/from a process.

toupper, tolower, _toupper, _tolower, toascii: translate/
toascii: translate/ toupper, tolower, _toupper, _tolower,

- 30 -

tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
termcap(5)
4014(1)
450(1)
tam(3t)
termc ap (5)
ctermid(3S)
asyncJIlain(10)
greek(1)
dial(3C)
tset(1)
clear(1)
get tydefs(4)
stty(l)
tabs(l)
ttyname(3C)
300(1)
hp(l)
ttY(1)
term(5)
umodem(1)
kiIl(l)
exit(2)
wait (2)
test(1)
ed(l)
ex(l)
ted(1)
newform(l)
fspec(4)
eqn(l)
cw(1)
nroff(1)
plock(2)
tsearch(3C)
time(l)
time(2)
profil(2)
profile(4)
scrset(l)
stime(2)
time(l)
time (2)
ctime(3C)
clock(3C)
times(2)
touch(l)
times(2)
utime(2)
tmpfile(3S)
tmpnam(3S)
conv(3C)
popen(3S)
conv(3C)
conv(3C)

tsort: topological sort.
modification times of a file. touch: update access and .

translate/ toupper, tolower, _toupper, _tolower, toascii:
_tolower, toascii: translate/ toupper, tolower, _toupper,

tr: translate characters.
ptrace: process

track:

umodem: remote file
/ _toupper, _tolower, toascii:

tr:
ftw: walk a file

twalk: manage binary search
tan, asin, acos, atan, atan2:

constant-width text for
mathematical text for nroft' or

format tables for nroft' or
values.

true, false: provide
twalk: manage binary search/

trace.
track mouse motion. . . .
track: track mouse motion.
transfer program for CP /M/
translate characters.
translate characters.
tree. . •....•
trees. /tfind, tdelete,
trigonometric functions. / cos,
trof!. cw, checkcw: prepare .
troft'. /neqn, checkeq: format
troft'. tbl: • . . • . . •
true, false: provide truth
truth values.
tsearch, tfind, tdelete,
tset: set terminal modes.
tsort: topological sort.
tty: get the terminal's name.

graphics for the extended TTY-37 type-box. greek: . .
a terminal. ttyname, isatty: find name of

utmp file of the current/ ttyslot: find the slot in the
tsearch, tfind, tdelete, twalk: manage binary search/

file: determine file type.
for the extended TTY-37 type-box. greek: graphics

types. types: primitive system data
types: primitive system data types. ...•......

graphs, and slides. mmt, mvt: typeset documents, view
/localtime, gmtime, asctime, tzset: convert date and time/

files. ua: user agent configuration
process. uahelp: user agent help .

special files. uaupd: update user agent
getpw: get name from UID. • .

limits. ulimit: get and set user .
creation mask. umask: set and get file .

mask. umask: set file-creation mode
program for CP /M terminals. umodem: remote file transfer

umount: unmount a file system.
UNIX system. uname: get name of current ..
UNIX system. uname: print name of current .

file. unget: undo a previous get of an SCCS
an SCCS file. unget: undo a previous get of

into input stream. ungetc: push character back
/seed48, Icong48: generate uniformly distributed/

a file. uniq: report repeated lines in
mktemp: make a unique file name.

units: conversion program.
execution. uux: UNIX-to-UNIX command

uucp, uulog, uuname: UNIX-to-UNIX copy.
uuto, uupick: public UNIX-to-UNIX file copy.

entry. unlink: remove directory
umount: unmount a file system. •

files. pack, pcat, unpack: compress and expand
times of a file. touch: update access and modification

- 31 -

Permuted Index

tsort(l)
touch(l)
conv(3C)
conv(3C)
tr(l)
ptrace(2)
track(3t)
track(3t)
umodem(l)
conv(3C)
tr(l)
ftw(3C)
tsearch(3C)
trig(3M)
cW(l)
eqn(l)
tbl(l)
true(l)
true(l)
tsearch(3C)
tset(l)
tsort(l)
tty(l)
greek(5)
ttyname(3C)
ttyslot(3C)
tsearch(3C)
file(1)
greek(5)
types(5)
types(5)
mmt(l)
ctime(3C)
ua(4)
uahelp(l)
uaupd(1)
getpw(3C)
ulimit(2)
umask(2)
umask(l)
umodem(l)
umount(2)
uname(2)
uname(l)
unget(l)
unget(l)
ungetc(3S)
drand48(3C)
uniq(l)
mktemp(3C)
units(l)
uux(lC)
uucp(lC)
uuto(lC)
unlink(2)
umount(2)
pack(l)
touch(l)

Permuted Index

of programs. make: maintain, update, and regenerate groups
lsearch: linear search and update. ...•..

sync: update super-block.
sync: update the super block.

files. uaupd: update user agent special
du: summarize disk usage.

files. ua: user agent configuration
uahelp: user agent help process.

uaupd: update user agent special files. •
id: print user and group IDs and names.

setuid, setgid: set user and group IDs.
character login name of the user. cuserid: get

/getgid, getegid: get real user, effective user, real/
environ: user environment.

ulimit: get and set user limits.
logname: return login name of user. . . .

/get real user, effective user, real group, and/
menus and forms and returns user. shform: displays
become super-user or another user. su: . • • . . .

the utmp file of the current user. /find the slot in
write: write to another user. . . . • . . .

mail, rmail: send mail to users or read mail. .
statistics. ustat: get file system

paste: paste buffer utilities.
modification times. utime: set file access and

utmp, wtmp: utmp and wtmp entry formats.
endutent, utmpname: access utmp file entry. /setutent,

ttyslot: find the slot in the utmp file of the current user.
entry formats. utmp, wtmp: utmp and wtmp

/pututline, setutent, endutent, utmpname: access utmp file/
control. uustat: uucp status inquiry and job •

UNIX-to-UNIX copy. uucp, uulog, uuname:
copy. uucp, uulog, uuname: UNIX-to-UNIX
uucp, uulog, uuname: UNIX-to-UNIX copy.

file copy. uuto, uupick: public UNIX-to-UNIX
and job control. uustat: uucp status inquiry

UNIX-to-UNIX file copy. uuto, uupick: public
execution. uux: UNIX-to-UNIX command

val: validate SCCS file.
val: validate SCCS file.

abs: return integer absolute value.
getenv: return value for environment name.

ceiling, remainder, absolute value functions. /fabs: floor,
putenv: change or add value to environment.

true, false: provide truth values.
/print formatted output of a varargs argument list.

argument list. varargs: handle variable
varargs: handle variable argument list.

vc: version control.
option letter from argument vector. getopt: get

assert: verify program assertion.
vc: version control.

get: get a version of an SCCS file.
sccsdiff: compare two versions of an SCCS file.

formatted output off vprintf, vfprintf, vsprintf: print .
(visual) display editor based/ vi, view: screen oriented

convert fonts to ASCII and vice-versa. cfont:
mmt, mvt: typeset documents, view graphs, and slides.

- 32 -

make(l)
Isearch(3C)
sync(2)
sync(l)
uaupd(1)
du{l)
ua(4)
uahelp{l)
uaupd(l)
id(l)
setuid(2)
cuserid(3S)
getuid(2)
environ(5)
ulimit(2)
logname(3X)
getuid(2)
shform(l)
sU(l)
ttyslot(3C)
write(1)
mail(l)
ustat(2)
paste(3t)
utime(2)
utmp(4)
getut{3C)
ttyslot(3C)
utmp(4)
getut(3C)
uustat(lC)
uucp(lC)
uucP(lC)
uucp(lC)
uuto(lC)
uustat(lC)
uuto(lC)
uux(lC)
val(l)
val(l)
abs(3C)
getenv(3C)
floor(3M)
putenv(3C)
true(l)
vprintf(3S)
varargs(5)
varargs(5)
vc(1)
getopt(3C)
assert (3X)
vc(1)
get(l)
sccsdiff(1)
vprintf(3S)
vi(l)
cfont(1)
mmt(1)

display editor based onl vi, view: screen oriented (visual)
file perusal filter for crt viewing. more, page:

onl vi, view: screen oriented (visual) display editor based
file system: format of system volume.
print formatted output of al vprintf, vfprintf, vsprintf:
output ofl vprintf, vfprintf, vsprintf: print formatted

program. asyncJllain: vt100, b513 terminal emulation
process. wait: await completion of . .

or terminate. wait: wait for child process to stop
to stop or terminate. wait: wait for child process

ftw: walk a file tree.
wc: word count.
what: identify SCCS files.

signal. signal: specify what to do upon receipt of a
who: who is on the system.

who: who is on the system.
window. wind: creates and places a

wind: creates and places a window.
cd: change working directory.

chdir: change working directory.
get path-name of current working directory. getcwd:

pwd: working directory name.
operations for bitmap I wrastop: pixel raster . .

write: write on a file.
putpwent: write password file entry.

write: write to another user.
write: write on a file. . .
write: write to another user.

open: open for reading or writing.
utmp, wtmp; utmp and wtmp entry formats. . ..

formats. utmp, wtmp: utmp and wtmp entry
list(s) and execute command. xargs: construct argument

jO, j1, jn, yO, y1, yn: Bessel functions.
jO, j1, jn, yO, y1, yn: Bessel functions.

compiler-compiler. yacc: yet another
jO, j1, jn, yO, y1, yn: Bessel functions. . .

- 33-

Permuted Index

vi(l)
more(1)
vi(l)
fs(4)
vprintf(3S)
vprintf(3S)
asyncJllain(lC)
wait(1)
wait(2)
wait (2)
ftw(3C)
wc(l)
what(l)
signal(2)
who(l)
who(1)
wind(3t)
wind(3t)
cd(l)
chdir(2)
getcwd(3C)
pwd(1)
wrastop(3t)
write(2)
putpwent(3C)
write(l)
write(2)
write(l)
open(2)
utmp(4)
utmp(4)
xargs(l)
bessel(3M)
bessel(3M)
yacc(l)
bessel (3M)

INTRO (1) INTRO (1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible
commands. Certain distinctions of purpose are made in the head­
mgs:

(1)
(1C)
(lG)

Commands of general utility.
Commands for communication with other systems.
Commands used primarily for graphics and computer­
aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [optz·on(s)] [cmdarg(s)]
where:

name

optz"on

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter < > optarg
where < > is optional white space.

A single letter representing an option without an
argument.

A single letter representing an option requiring an
argument.

Argument (character string) satisfying preceding
argletter.

Path name (or other command argument) not
beginning with - or, - by itself indicating the stan­
dard input.

SEE ALSO
getopt(1), getopt(3C).

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one
supplied by the system and giving the cause for termination, and
(in the case of «normal" termination) one supplied by the program
(see waz"t(2) and exz"t(2)). The former byte is 0 for normal termi­
nation; the latter is customarily 0 for successful execution and
non-zero to indicate troubles such as erroneous parameters, bad or
inaccessible data, or other inability to cope with the task at hand.
It is called variously «exit code", ((exit status", or ((return code",
and is described only where special conventions are involved.

Regretfully, many commands do not adhere to the aforementioned
syntax.

- 1 -

300 (1)

NAME

300(1)

300, 300s - handle special functions of DASI 300 and 300s termi­
nals·

SYNOPSIS
300 [+12] [-n 1 [-dt,l,c 1

3008 [+12] [-n] [-dt,l,c 1

DESCRIPTION
800 supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 3(0) terminal; 800s performs the same func­
tions for the DASI 300s (GSI 300s or DTC 300s) terminal. It con­
verts half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts to draw
Greek letters and other special symbols. It permits convenient use
of 12-pitch text. It also reduces printing time 5 to 70%. 800 can
be used to print equations neatly, in the sequence:

neqn file ••• I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is
turned on before 800 is used.

The behavior of 800 can be modified by the optional flag argu­
ments to handle 12-pitch text, fractional line spacings, messages,
and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 ter­
minals normally allow only two combinations: lO-pitch,
6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the
12-pitch, 6 lines per inch combination, the user should
turn the PITCH switch to 12, and use the +12 option.

-n controls the size of half-line spacing. A half-line is, by
default, equal to 4 vertical plot increments. Because
each increment equals 1/48 of an inch, a 10-pitch line­
feed requires 8 increments, while a 12-pitch line-feed
needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appear­
ance of subscripts and superscripts. For example, nrolJ
half-lines could be made to act as quarter-lines by using
-2. The user could also obtain appropriate half-lines
for 12-pitch, 8 lines/inch mode by using the option -3
alone, having set the PITCH switch to 12-pitch.

-dt,l,c controls delay factors. The default setting is
-d3,OO,30. DASI 300 terminals sometimes produce
peculiar output when faced with very long lines, too
many tab characters, or long strings of blankless, non­
identical characters. One null (delay) character is
inserted in a line for every set of t tabs, and for every
contiguous string of c non-blank, non-tab characters. If
a line is longer than 1 bytes, l+(total length)/20 nulls
are inserted at the end of that line. Items can be omit­
ted from the end of the list, implying use of the default
values. Also, a value of zero for t (c) results in two null
bytes per tab (character). The former may be needed

- 1 -

300 (1) 300(1)

for C programs, the latter for files like / etc/ passwd.
Because terminal behavior varies according to the
specific characters printed and the load on a system, the
user may have to experiment with these values to get
correct output. The -d option exists only as a last
resort for those few cases that do not otherwise print
properly. For example, the file /etc/passwd may be
printed using -d3,30,5. The value -dO,! is a good
one to use for C programs that have many levels of
indentation.

Note that the delay control interacts heavily with the
prevailing carriage return and line-feed delays. The
sttY(l) modes nlO cr2 or nlO cr3 are recommended for
most uses.

800 can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle
of a document. Instead of hitting the return key in these cases,
you must use the line-feed key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff - T300 files. •• and nroff files ••. I 300
nroff - T300-12 files. •• and nroff files ••• I 300 + 12

The use of 800 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move­
ment optimization of 800 may produce better-aligned output.

The neqn names of, and reSUlting output for, the Greek and spe­
cial characters supported by 800 are shown in greek (5).

SEE ALSO

BUGS

450(1), eqn(I), mesg(I), nroff(I), stty(I), tabs(I), tbl(I), greek(5).

Some special characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a
friction-feed platen instead of a forms tractor; although good
enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

- 2 -

4014 (1) 4014 (1)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t] [-n] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal;
4014 arranges for 66 lines to fit on the screen, divides the screen
into N columns, and contributes an eight-space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are
collected and plotted when necessary. TELETYPE Model 37 half­
and reverse-line sequences are interpreted and plotted. At the end
of each page, 4014 waits for a new-line (empty line) from the key­
board before continuing on to the next page. In this wait state,
the command! cmd will send the cmd to the shell.

The command line options are:

-t Don't wait between pages (useful for directing output into
a file).

-n Start printing at the current cursor position and never
erase the screen.

-eN Divide the screen into N columns and wait after the last
column.

- pL Set page length to L; L accepts the scale factors i (inches)
and I (lines); default is lines.

SEE ALSO
pr(l), tc(l).

- 1 -

450 (1) 450 (1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical,
such as the DIABLO 1620 or XEROX 1700. It converts half-line
forward, half-line reverse, and full-line reverse motions to the
correct vertical motions. It also attempts to draw Greek letters
and other special symbols in the same manner as 800(1). 450 can
be used to print equations neatly, in the sequence:

neqn file .. , I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is
ON before 450 is used. The SPACING switch should be put in the
desired position (either 10- or 12-pitch). In either case, vertical
spacing is 6 lines/inch, unless dynamically changed to 8 lines per
inch by an appropriate escape sequence.

450 can be used with the nroff -8 flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle
of a document. Instead of hitting the return key in these cases,
you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in
favor of one of the following:

nroff - T450 files ...
or

nroff - T450-12 files .. ,

The use of 450 can thus often be avoided unless special delays or
options are required; in a few cases, however, the additional move­
ment optimization of 450 may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and spe­
cial characters supported by 450 are shown in greek(5).

SEE ALSO

BUGS

300(1), eqn(I), mesg(l), nroff(I), stty(l), tabs(1), tbl(1), greek(5).

Some special. characters cannot be correctly printed in column 1
because the print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a
friction-feed platen instead of a forms tractor; although good
enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line
of text after one or more reverse line-feeds.

- 1 -

ADB (1) ADB(1)

NAME
adb - absolute debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe­
cution of UNIX programs.

Obifil is normally an executable program file, preferably contain­
ing a symbol table; if not then the symbolic features of adb can­
not be used although the file can still be examined. The default
for obifil is a.out. Corfil is assumed to be a core image file pro­
duced after executing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses
are to the standard output. If the -w flag is present then both
obifil and corfil are created if necessary and opened for reading
and writing so that files can be modified using adb. Adb ignores
QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set
to O. For most commands count specifies how many times the
command will be executed. The default count is 1. Address and
count are expressions.

The interpretation of an address depends on the context it is used
in. If a subprocess is being debugged then addresses are inter­
preted in the usual way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS

+

"

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer Hexadecimal by default or if preceded by Ox; octal if pre­
ceded by 00 or 00; decimal if preceded by Ot or OT.

inte ger. fraction
A 32 bit floating point number.

I ecce I The ASCII value of up to 4 characters. A \ may be used
to escape a '.

< name
The value of name, which is either a variable name or a
68010/68020 register name. Adb maintains a number of
variables (see VARIABLES) named by single letters or
digits. If name is a register name then the value of the
register is obtained from the system header in corfil. The
registers are dO through d7, aO through a7, sp, pc, cc,

- 1 -

ADB(1) ADB(I)

sr, and Usp.

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. \ may be
used to escape other characters. The value of the symb ot
is taken from the symbol table in objfil.

_ symbol
In 0, the "true name" of an external symbol begins with
_. It may be necessary to utter this name to distinguish it
from internal or hidden variables of a program.

routine .name
The address of the variable name in the specified C rou­
tine. Both routine and name are symbols. If name is
omitted the value is the address of the most recently
activated C stack frame corresponding to routine.

(exp) The value of the expression exp.

Monadic operators:

* exp The contents of the location addressed by exp in
corfil.

@exp The contents of the location addressed by exp in
objfil.

-exp Integer negation.

- exp Bitwise complement.

Dyadic operators are left associative and are less binding than
monadic operators.

COMMANDS

el +e2 Integer addition.

el - e 2 Integer subtraction.

el * e2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

ell e2 Bitwise disjunction.

el #e2 El rounded up to the next multiple of e2.

Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands ?
and / may be followed by *; see ADDRESSES for further details.)

?/ Locations starting at address in obJfil are printed accord­
ing to the format f. dot is incremented by the sum of
the increments for each format letter (q.v.).

/ / Locations starting at address in corfU are printed
according to the format / and dot is incremented as for
?

- / The value of address itself is printed in the styles indi­
cated by the format f. (For i format? is printed for the
parts of the instruction that reference subsequent words.)

- 2 -

ADB (1) ADB(1)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While
stepping through a format dot is incremented by the amount
given for each format letter. If no format is given then the last
format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output

04
q 2
Q4
d 2
D4
x 2
X4
u 2
U4
r 4
F 8
b 1
c 1
C 1

s n

S n

Y4
i n

a 0

by adb are preceded by O.
Print 4 bytes in octal.
Print in signed oGtal.
Print long signed octal.
Print in decimal.
Print long decimal.
Print 2 bytes in hexadecimal.
Print 4 bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the following
escape convention. Character values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The charac­
ter @ is printed as @@.

Print the addressed characters until a zero charac­
ter is reached.
Print a string using the @ escape convention.
The value n is the length of the string including
its zero terminator.
Print 4 bytes in date format (see ctime(3C)).
Print as machine instructions. The value n is the
number of bytes occupied by the instruction.
This style of printing causes variables 1 and 2 to
be set to the offset parts of the source and desti­
nation respectively.
Print the value of dot in symbolic form. Symbols
are checked to ensure that they have an appropri-
ate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 2 Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

t 0 When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to
the next 8-space tab stop.

r 0 Print a space.
n 0 Print a new-line.

-3-

ADB(1)

new-line

ADB(l)

" ••• " 0 Print the enclosed string.
Dot is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[?/ll value mask
Words starting at dot are masked with mask and com­
pared with value until a match is found. If L is used then
the match is for 4 bytes at a time instead of 2. If no
match. is found then dot is unchanged; otherwise dot is set
to the matched location. If mask is omitted then -1 is
used.

[?/lw value ...
Write the 2-byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?/lm b1 e111[?/l

>name

New values for (b1, e1, /1) are recorded. If less than three
expressions are given then the remaining map parameters
are left unchanged. If the ? or I is followed by * then the
second segment (b2, e2, 12) of the mapping is changed. If
the list is terminated by ? or I then the file (objfil or
corfil respectively) is used for subsequent requests. (So
that,for example, 1m? will cause I to refer to objfil.)

Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following!.

$modilier
Miscellaneous commands. The available modifiers are:

<I Read commands from the file I and return.
> I Send output to the file I, which is created if it

does not exist.
r Print the general registers and the instruction

addressed by pc. Dot is set to pc.
b Print all breakpoints and their associated counts

and commands.
c C stack backtrace. If address is given then it is

taken as the address of the current frame (instead
of fp). If count is given then only the first count
frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to address (default
80).

s Set the limit for symbol matches to address
(default 255).

- 4-

ADB (1)

o
d
q
v
f
m

:modifier

ADB (1)

All integers input are regarded as octal.
Reset integer input as described in EXPRESSIONS.
Exit from adb.
Print all non zero variables.
Print the 68881 floating-point registers.
Print the address map.

Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is exe­
cuted count-1 times before causing a stop. Each
time the breakpoint is encountered the command
c is executed. If this command sets dot to zero
then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given
explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. The value count specifies
how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be
supplied on the same line as the command. An
argument starting with < or > causes the stan­
dard input or output to be established for the
command. All signals are turned on on entry to
the subprocess.

es The subprocess is continued with signals (see sig­
nal(2)). If address is given then the subprocess is
continued at this address. If no signal is specified
then the signal that caused the subprocess to stop
is sent. Breakpoint skipping is the same as for r.

813 As for e except that the subprocess is single
stepped count times. If there is no current sub­
process then objfil is run as a subprocess as for r.
In this case no signal can be sent; the remainder
of the line is treated as arguments to the subpro­
cess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set ini­
tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil. If corfil does not appear to be a core file then these values
are set from obJfil.

- 5 -

ADB (1) ADB (1)

b
d
e
m
s
t

The base address of the data segment.
The data segment size.
The entry point.
The "magic" number (0407, 0410 or 0413).
The stack segment size.
The text segment size.

ADDRESSES

FILES

The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, el, 11) and (b2, e2, 12) and the file
address corresponding to a written address is calculated as fol­
lows:

bl S address < el => file address=address+l1-bl
otherwise

b2 S address < e2 => file address =address+12- b2,

otherwise, the requested address is not legal. In some cases (e.g.
for programs with separated I and D space) the two segments for a
file may overlap. If a ? or / is followed by an * then only the
second triple is used.

The initial setting of bqth mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file, bl is set to 0, el is set to the maximum file size and /1
is set to 0; in this way the whole file can be examined with no
address translation.

In order for adb to be used on large files all appropriate values are
kept as signed 32-bit integers.

/dev/kmem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(4), core(4).

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal termination of
commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry
to the program.

When single stepping, system calls do not count as an executed
instruction.

Local variables whose names are the same as an external variable
may foul up the accessing of the external.

- 6 -

ADMIN (1) ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[namelJ [-rrel] [-t[name]] [-ffiag[fiag-vallJ
[-dfiag[fiag-vallJ [-alogin] [-elogin] [-m[mrlistlJ [-y[commentlJ
[-h] [-z] files

DESCRIPTION
Admin is used to create new sees files and change parameters of
existing ones. Arguments to admin, which may appear in any
order, consist of keyletter arguments, which begin with -, and
named files (note that sees file names must begin with the char­
acters s.). If a named file doesn't exist, it is created, and its
parameters are initialized according to the specified key letter argu­
ments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and
other parameters are left as is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed. Again, non-sees
files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed since the effects of
the arguments apply independently to each named file.

-n

-i[name]

-rrel

This keyletter indicates that a new sees
file is to be created.

The name of a file from which the text for
a new sees file is to be taken. The text
constitutes the first delta of the file (see -r
key letter for delta numbering scheme). If
the i key letter is used, but the file name is
omitted, the text is obtained by reading the
standard input until an end-of-file is
encountered. If this keyletter is omitted,
then the sees file is created empty. Only
one sees file may be created by an adm,'n
command on which the i keyletter is sup­
plied. Using a single admin to create two
or more sees files require that they be
created empty (no -i keyletter). Note that
the -i keyletter implies the -n keyletter.

The release into which the initial delta is
inserted. This key letter may be used only
if the -i keyletter is also used. If the -r
keyletter is not used, the initial delta is
inserted into release 1. The level of the ini-

- 1 -

ADMIN (1)

-t[name]

-f/lag

b

ADMIN(l)

tial delta is always 1 (by default initial del­
tas are named 1.1).

The name of a file from which descriptive
text for the sees file is to be taken. If the
-t keyletter is used and admin is creating a
new sees file (the -n and/or -i keyletters
also used), the descriptive text file name
must also be supplied. In the case of exist­
ing sees files: (1) a -t keyletter without a
file name causes removal of descriptive text
(if any) currently in the sees file, and (2) a
-t keyletter with a file name causes text (if
any) in the named file to replace the
descriptive text (if any) currently in the
sees file.

This key letter specifies a flag, and, possibly,
a value for the flag, to be placed in the
sees file. Several (keyletters may be sup­
plied on a single admin command line. The
allowable flags and their values are:

Allows use of the -b keyletter on a get(1)
command to create branch deltas.

cceil The highest release (i.e., "ceiling"), a
number less than or equal to 9999, which
may be retrieved by a get(1) command for
editing. The default value for an
unspecified c flag is 9999.

(floor The lowest release (i.e., "floor"), a number
greater than 0 but less than 9999, which
may be retrieved by a get(I) command for
editing. The default value for an
unspecified (flag is 1.

dSID The default delta number (SID) to be used
by a get(1) command.

Causes the "No id keywords (ge6)" message
issued by get(1) or delta(I) to be treated as
a fatal error. In the absence of this flag,
the message is only a warning. The mes­
sage is issued if no sees identification key­
words (see get(1)) are found in the text
retrieved or stored in the sees file.

j Allows concurrent get(I) commands for
editing on the same SID of an sees file.
This allows multiple concurrent updates to
the same version of the sees file.

I list A list of releases to which deltas can no
longer be made (get -e against one of these
"locked" releases fails). The list has the
following syntax:

- 2 -

ADMIN (1)

n

qtext

mmod

ttype

v[pgm]

-dflag

lUst

-alogin

ADMIN(I)

<list> <range> <list>
<range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to
specifying all releases for the named sees
file.

Causes delta(l) to create a "null" delta in
each of those releases (if any) being skipped
when a delta is made in a new release (e.g.,
in making delta 5.1 after delta 2.7, releases
3 and 4 are skipped). These null deltas
serve as "anchor points" so that branch
deltas may later be created from them.
The absence of this flag causes skipped
releases to be non-existent in the sees file
preventing branch deltas from being
created from them in the future.

User definable text substituted for all
occurrences of the %Q% keyword in sees
file text retrieved by get(l).

Mod ule name of the sees file substituted
for all occurrences of the %M% keyword in
sees file text retrieved by get(l). If the m
flag is not specified, the value assigned is
the name of the sees file with the leading
s. removed.

Type of module in the sees file substituted
for all occurrences of %Y% keyword in
sees file text retrieved by get(l).

Causes delta(l) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value
specifies the name of an MR number vali­
dity checking program (see delta(1)). (If
this flag is set when creating an sees file,
the m keyletter must also be used even if
its value is nUll).

Causes removal (deletion) of the specified
flag from an sees file. The -d key letter
may be specified only when processing
existing sees files. Several -d key letters
may be supplied on a single admin com­
mand. See the -f keyletter for allowable
flag names.

A list of releases to be "unlocked". See the
-f keyletter for a description of the I flag
and the syntax of a list.

A login name, or numerical UNIX group ID,
to be added to the list of users which may

- 3-

ADMIN(l)

-elogin

-y[comment]

-m[mrlist]

-h

-z

ADMIN(I)

make deltas (changes) to the sees file. A
group ID is equivalent to specifying all log£n
names common to that group ID. Several a
key letters may be used on a single admt'n
command line. As many log£ns, or numeri­
cal group IDs, as desired may be on the list
simultaneously. If the list of users is
empty, then anyone may add deltas.

A login name, or numerical group ID, to be
erased from the list of users allowed to
make deltas (changes) to the sees file.
Specifying a group ID is equivalent to speci­
fying all login names common to that group
ID. Several e key letters may be used on a
single admin command line.

The comment text is inserted into the sees
file as a comment for the initial delta in a
manner identical to that of delta (1). Omis­
sion of the -y keyletter results in a default
comment line being inserted in the form:

date and time created YY / MM / DD
HH:MM:SS by login

The -y keyletter is valid only if the -i
and/or -0 keyletters are specified (i.e., a
new sees file is being created).

The list of Modification Requests (MR)
numbers is inserted into the sees file as
the reason for creating the initial delta in a
manner identical to delta(l). The v flag
must be set and the MR numbers are vali­
dated if the v flag has a value (the name of
an MR number validation program). Diag­
nostics will occur if the v flag is not set or
MR validation fails.

Causes admin to check the structure of the
sees file (see sccsfile(5)), and to compare a
newly computed check-sum (the sum of all
the characters in the sees file except those
in the first line) with the check-sum that is
stored in the first line of the sees file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file,
so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only
meaningful when processing existing files.

The sees file check-sum is recomputed and
stored in the first line of the sees file (see
-h, above).

- 4 -

ADMIN (1) ADMIN (1)

FILES

Note that use of this keyletter on a truly
corrupted file may prevent future detection
of the corruption.

The last component of all sees file names must be of the form
s.jile-name. New sees files are given mode 444 (see chmod(l)).
Write permission in the pertinent directory is, of course, required
to create a file. All writing done by admin is to a temporary x­
file, called x.jile-name, (see get(l)), created with mode 444 if the
admin command is creating a new sees file, or with the same
mode as the sees file if it exists. After successful execution of
admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that
changes are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be mode 444. The mode of the
directories allows only the owner to modify sees files contained in
the directories. The mode of the sees files prevents any
modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(l).
Care must betaken! The edited file should always be processed by
an admin -h to check for corruption followed by an admin -z
to generate a proper check-sum. Another admin -h is recom­
mended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.jile-name),
which is used to prevent simultaneous updates to the sees file by
different users. See get{l) for further information.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l), sccsfile(4).
Source Code Control System User's Guide in the UNIX System
User's Guide.

DIAGNOSTICS
Use help(l) for explanations.

- 5 -

AR(l) AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname 1 afile name ...

DESCRIPTION
The Ar command maintains groups of files combined into a single
archive file. Its main use is to create and update library files as
used by the link editor. It can be used, though, for any similar
purpose. The magic string and the file headers used by ar consist
of printable ASCII characters. If an archive is composed of print­
able files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is
portable across all machines. The portable archive format and
structure is described in detail in ar(4). The archive symbol table
(described in ar(4)) is used by the link editor (ld(l)) to effect mul­
tiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when
there is at least one object file in the archive. The archive symbol
table is in a specifically named file which is always the first file in
the archive. This file is never mentioned or accessible to the user.
Whenever the ar(1) command is used to create or update the con­
tents of such an archive, the symbol table is rebuilt. The s option
described below will force the symbol table to be rebuilt.

Key is an optional -, followed by one character from the set
drqtprnx, optionally concatenated with one or more of vuaibcls.
Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional
character u is used with r, then only those files with
modified dates later than the archive files are replaced. If
an optional positioning character from the set abi is used,
then the posname argument must be present and specifies
that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive
file. Optional positioning characters are invalid. The
command does not check whether the added members are
already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a posi­
tioning character is present, then the posname argument
must be present and, as in r, specifies where the files are
to be moved.

- 1 -

AR(l)

FILES

x

v

c

AR(l)

Extract the named files. If no names are given, all files in
the archive are extracted. In neither case does x alter the
archive file.

Give a verbose file-by-file description of the making of a
new archive file from the old archive and the constituent
files. When used with t, it gives a long listing of all infor­
mation about the files. When used with x, precede each
file with a name.

Suppress the· message that is produced by default when
afile is created.

Place temporary files in the local current working direc­
tory rather than in the directory specified by the environ­
ment variable TMPDIR or ip. the default directory

s Force the regeneration of the archive symbol table even if
ar(1) is not invoked with a command which will modify
the archive contents. This command is useful to restore
the archive symbol table after the strip (1) command has
been used on the archive.

/tmp/ar* temporaries

SEE ALSO

NOTES

BUGS

file(1), ld(l), lorder(l), strip(l), a.out(4), ar(4).

This archive format is new to this release. The ar command will
not accept archive files in the old format. Use Release 2.0 or 3.0
ar commands (available from AT&T on an installable floppy disk)
to take apart archive files in the old format. Release 3.5 utilities
cannot be used to modify Release 3.0 archives; Release 3.0 utilities
cannot be used to modify Release 3.5 archives.

If the same file is mentioned twice in an argument list, it may be
put in the archive twice.

- 2 -

AS(I) (AT&T UNIX PC Only) AS(I)

NAME
as - assembler

SYNOPSIS
as [-0 objfile] [-n] [-j] [-m] [-R] [-r] [-bwl]
[-V] [-T] sourcefile

DESCRIPTION
The as command translates mc68010 or mc68020 assembly
language in sourcefile into object code. The result is a common
object file, suitable for input to the link editor. The following flags
may be specified in any order:

-0 obJfile
Put the output of the assembly in objfile. By default,
the output file name is formed by removing the .s suffix,
if there is one, from the input file name and appending
a .0 suffix.

-n Turn off long/short address optimization. By default,
address optimization takes place.

-j Invoke the long-jump assembler. The address optimiza­
tion algorithm chooses between long and short address
lengths, with short lengths chosen when possible.
Often, three distinct lengths are allowed by the machine
architecture; a choice must be made between two of
those lengths. When the two choices given to the
assembler exclude the largest length allowed, then some
addresses might be unrepresentable. The long-jump
assembler will always have the largest length as one of
its allowable choices. If the assembler is invoked
without this option, and the case arises where an
address is unrepresentable by either of the two allowed
choices, then the user will be informed of the error, and
advised to try again using the - j option.

-m Run the m4 macro pre-processor on the input to the
assembler.

-R Remove (unlink) the input file after assembly is com­
pleted.

-r Place all assembled data (normally placed in the data
section) into the text section. This option effectively
disables the .data pseudo operation. This option is off
by default.

- [bw I] Create byte (b), halfword (w) or long (I) displacements
for undefined symbols. (An undefined symbol is a refer­
ence to a symbol whose definition is external to the
input file or a forward reference.) The default value for
this option is long (1) displacements.

-V Write the version number of the assembler being run on
the standard error output.

-T Truncate symbols to eight characters.

- 1 -

AS(l) (AT&T UNIX PC Only) AS(l)

FILES
/ usr / tm p / as[1-6] XXXXXX temporary files

SEE ALSO
Id(1), m4(1), nm(I), strip(I), a.out(4).

WARNING

BUGS

If the - m (m4 macro pre-processor invocation) option is used,
keywords for m4 (see m4(1)) cannot be used as symbols (variables,
functions, labels) in the input file since m4 cannot determine
which are assembler symbols and which are real m4 macros.

Use the -b or -w option only when undefined symbols are known
to refer to locations representable by the specified default displace­
ment. Use of either option when assembling a file containing a
reference to a symbol that is to be resolved by the loader can lead
to unpredictable results, since the loader may be unable to place
the address of the symbol into the space provided.

The .align assembler directive is not guaranteed to work in the
.text section when optimization is performed.

Arithmetic expressions may only have one forward referenced
symbol per expression.

- 2 -

ASA(1) ASA(1)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files 1

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA
carriage control characters. It processes either the files whose
names are given as arguments or the standard input if no file
names are supplied. The first character of each line is assumed to
be a control character; their meanings are:

, , (blank) single new line before printing

o double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated
as if they began with ". The first character of a line is not
printed. If any such lines appear, an appropriate diagnostic will
appear on standard error. This program forces the first line of
each input file to start on a new page.

To correctly view the output of FORTRAN programs which use
ASA carriage control characters, asa could be used as a filter
thusly:

a.out I asa Ilpr

and the output, properly formatted and pagenated, would be
directed to the line printer. FORTRAN output sent to a file could
be viewed by:

SEE ALSO
efl(l).

asa file

- 1 -

ASYNC_MAIN (lC) ASYNC_MAIN (lC)

NAME
async_main - vt100, b513 terminal emulation program

SYNOPSIS
async_main e profile
async_main r profile r / dey /ttyOOO
async_main r profile r / dey /phx i phfd p pid

DESCRIPTION
Async_main is used to communicate with a host computer using
vt100 or b513 escape and control sequences and to edit communi­
cation profiles. Async_main may be used with any of ports
/dev/ttyOOO or /dev/phx, where x is 0 or 1, to communicate
with a host.

Use the first form above to edit (e) a profile. Profile must contain
the full path name of the file to be edited. The profile suffix for
/ dey /ttyOOO is :.A2 and for / dey /phx the suffix is :Am.

To run async_main via /dev/ttyOOO, use the second form above.
Again, profile must contain the full path name of the file to be
used in the run (r) session.

To run async_main via /dev/phO or /dev/phl, use the third
form above. Phfd is the phone file descriptor. The calling process
must first open the device file via open(2) and pass the phone file
descriptor to async_main. Pid is the process ID of the calling pro­
cess.

- 1 -

AWK(l) AWK(l)

NAME
aw k - pattern scanning and processing language

SYNOPSIS
8.wk [-Fc 1 [prog 1 [parameters 1 [files 1

DESCRIPTION
A wk scans each input file for lines that match any of a set of pat­
terns specified in prog. With each pattern in prog there can be an
associated action that will be performed when a line of a file
matches the pattern. The set of patterns may appear literally as
prog, or in a file specified as -f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is
read. The file name - means the standard input. Each line is
matched against the pattern portion of every pattern-action state­
ment; the associated action is performed for each matched pat­
tern.

An input line is made up of fields separated by white space. (This
default can be changed by using FS, see below). The fields are
denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always
matches. An action is a sequence of statements. A statement can
be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression conditional; expression) statement
break
continue
{ [statement 1 .. . }
variable = expression
print [expression-list 1 [> expression 1
printf format [, expression-list 1 [> expression 1
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right
braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate, and
are built using the operators +, -, *, I, %, and concatenation
(indicated by a blank). The C operators ++, --, +=, -=,
*=, 1=, and %= are also available in expressions. Variables
may be scalars, array elements (denoted xli]) or fields. Variables
are initialized to the null string. Array subscripts may be any
string, not necessarily numeric; this allows for a form of associa­
tive memory. String constants are quoted (").

The p"Ont statement prints its arguments on the standard output
(or on a file if > expr is present), separated by the current output

- 1 -

AWK(l) AWK(l)

field separator, and terminated by the output record separator.
The printJ statement formats its expression list according to the
format (see printJ(3S)).

The built-in function length returns the length of its argument
taken as a string, or of the whole line if no argument. There are
also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer; substr(s, m, n) returns the n­
character substring of s that begins at position m. The function
sprt'ntJ(Jmt, expr, expr, ...) formats the expressions according to
the printJ(3S) format given by Jmt and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, II, &&, and
parentheses) of regular expressions and relational expressions.
Regular expressions must be surrounded by slashes and are as in
egrep (see grep(l)). Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a
matchop is either - (for contains) or !- (for does not contain). A
conditional is an arithmetic expression, a relational expression, or
a Boolean combination of these.

The special patterns BEGIN and END may be used to capture con­
trol before the first input line is read and after the last. BEGIN
must be the first pattern, END the last.

A single character c may be used to separate the fields by starting
the program with:

BEGIN { FS = c }

or by using the -F c option.

Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal number of
the current record; FILENAME, the name of the current input file;
OFS, the output field separator (default blank); ORS, the output
record separator (default new-line); and OFMT, the output format
for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

- 2-

AWK(l) AWK(l)

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: awk -f program n=5 input

SEE ALSO

BUGS

grep(1), lex(1), sed(1).
Awk-A Pattern Scanning and Processing Language by A. V. Aho,
B. W. Kernighan, and P. J. Weinberger.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings.
To force an expression to be treated as a number add 0 to it; to
force it to be treated as a string concatenate the null string (" ,,)
to it.

- 3-

BANNER(l)

NAME
banner - make posters

SYNOPSIS
ba.nner strings

DESCRIPTION

BANNER(l)

Banner prints its arguments (each up to 10 characters long) in
large letters on the standard output.

SEE ALSO
echo(1).

- 1 -

BASENAME (1) BASENAME (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
b aSen arne string [suffix 1
dirnarne string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present
in string) from string, and prints the result on the standard out­
put. It is normally used inside substitution marks (, ,) within
shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the
/usr/src/crnd/cat.c, compiles the named file and
output to a file named cat in the current directory:

cc $1
mv a.out 'basename $1 .c'

argument
moves the

The following example will set the shell variable NAME to
/usr/src/crnd:

SEE ALSO
sh(1).

BUGS

NAME= 'dirname /usr/src/cmd/cat.c'

The basename of / is null and is considered an error.

- 1 -

BC(1) BC (1)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
be [-e 1 [-I 1 [file ... 1

DESCRIPTION
Be is an interactive processor for a language that resembles C but
provides unlimited precision arithmetic. It takes input from any
files given, then reads the standard input. The -I argument
stands for the name of an arbitrary precision math library. The
syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments

Names

are enclosed in / * and * / .

simple variables: L
array elements: L [E 1
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal
point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - * / % " (% is remainder; ,.. is power)
++ -- (prefix and postfix; apply to names)
==<= >=!= < >
= =+ =- =* =/ =% ="

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... ,L
S; '" S
return (E)

}
Functions in -I math library

s(x) sine
c(x) cosine
e(x) exponential

- 1 -

BC (1)

l(x)
a(X)
j(n,x)

log
arctangent
Bessel function

All function arguments are passed by value.

BC (1)

The value of a statement that is an expression is printed unless
the main operator is an assignment. Either semicolons or new­
lines may separate statements. Assignment to scale influences the
number of digits to be retained on arithmetic operations in the
manner of dc(l). Assignments to ibase or obase set the input and
output number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simUltaneously. All variables are global to the program.
((Auto" variables are pushed down during function calls. When
using arrays as function arguments or defining them as automatic
variables empty square brackets must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automati­
cally, unless the -c (compile only) option is present. In this case
the dc input is sent to the standard output instead.

EXAMPLE

Fll..ES

scale = 20
define e(x){

auto a, b, c, i, s
a=l
b=l
s = 1
for(i=l; 1==1; i++){

}
}

a = a*x
b = b*i
c = ajb
if(c == 0) return(s)
s = s+c

defines a function to compute an approximate value of the
exponential function and

for(i=l; i<=lO; i++) e(i)

prints approximate values of the exponential function of the first
ten integers.

jusr jlibjlib.b
jusr jbinj dc

mathematical library
desk calculator proper

SEE ALSO
dc(1).
BC-An Arbitrary Precision Desk-Calculator Language by L. L.
Cherry and R. Morris.

- 2 -

BC(1) BC (1)

BUGS
No &&, I I yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

- 3-

BDIFF (1) BDIFF (1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-8]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines
must be changed in two files to bring them into agreement. Its
purpose is to allow processing of files which are too large for d(ff.
Bdiff ignores lines common to the beginning of both files, splits
the remainder of each file into n-line segments, and invokes d(ff
upon corresponding segments. The value of n is 3500 by default.
If the optional third argument is given, and it is numeric, it is
used as the value for n. This is useful in those cases in which
3500-line segments are too large for di.ff, causing it to fail. If fUel
(file2) is -, the standard input is read. The optional -8 (silent)
argument specifies that no diagnostics are to be printed by bd(ff
(note, however, that this does not suppress possible exclamations
by d£ff. If both optional arguments are specified, they must
appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers
adjusted to account for the segmenting of the files (that is, to
make it look as if the files had been processed whole). Note that
because of the segmenting of the files, bdtff does not necessarily
find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
difI(1).

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

BFS(l) BFS(l)

NA~ffi

bfs - big file scanner

SYNOPSIS
bfs [- 1 name

DESCRIPTION
Bfs is (almost) like ed(l) except that it is read-only and processes
much larger files. Files can be up to 1024K bytes (the maximum
possible size) and 32K lines, with up to 255 characters per line.
Bfs is usually more efficient than ed for scanning a file, since the
file is not copied to a buffer. It is most useful for identifying sec­
tions of a large file where csplit(1) can be used to divide it into
more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the
size of any file written with the w command. The optional -
suppresses printing of sizes. Input is prompted with * if P and a
carriage return are typed as in ed. Prompting can be turned off
again by inputting another P and carriage return. Note that mes­
sages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addi­
tion, regular expressions may be surrounded with two symbols
besides / and 1: > indicates downward search without wrap­
around, and < indicates upward search without wrap-around.
Since bfs uses a different regular expression-matching routine from
ed, the regular expressions accepted are slightly wider in scope
(see regcmp(3X)). There is a slight difference in mark names: only
the letters a. through z may be used, and all 26 marks are remem­
bered.

The e, g, v, k, 0, p, q, W, =, ! and null commands operate as
described under ed. Commands such as ---, +++-, +++=,
-12, and +4p are accepted. Note that 1,10p and 1,10 will both
print the first ten lines. The f command only prints the name of
the file being scanned; there is no rememb ered file name. The W

command is independent of output diversion, truncation, or
crunching (see the xo, xt and xc commands, below). The follow­
ing additional commands are available:

xf file
Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is
received or an error occurs, reading resumes with the
file containing the xf. Xf commands may be nested to
a depth of 10.

xo [file 1
Further output from the p and null commands is
diverted to the named file, which, if necessary, is
created mode 666. If file is missing, output is diverted
to the standard output. Note that each diversion
causes truncation or creation of the file.

- 1 -

BFS(l) BFS(l)

: lab el
This positions a label in a command file. The label is
terminated by new-line, and blanks between the: and
the start of the label are ignored. This command may
also be used to insert comments into a command file,
since labels need not be referenced.

(• , •)xb / regular express£on/ lab el
A jump (either upward or downward) is made to lab el
if the command succeeds. It fails under any of the fol­
lowing conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn't match at
least one line in the specified range, including
the first and last lines.

On success, • is set to the line matched and a jump is
made to label. This command is the only one that
doesn't issue an error message on bad addresses, so it
may be used to test whether addresses are bad before
other commands are executed. Note that the com­
mand

xbj"/ label

is an unconditional jump.
The xb command is allowed only if it is read from
someplace other than a terminal. If it is read from a
pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to
at most number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the
xv. xv5100 or xv5 100 both assign the value 100 to
the variable 5. Xv61,100p assigns the value 1,100p
to the variable 6. To reference a variable, put a % in
front of the variable name. For example, using the
above assignments for variables 5 and 6:

l,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p
would globally search for the characters 100 and print
each line containing a match. To escape the special
meaning of %, a \ must precede it.

g/".*\%[cdsJ/p

- 2-

BFS(l) BFS(l)

could be used to match and list lines containing prz"ntJ
of characters, decimal integers, or strings.
Another feature of the xv command is that the first
line of output from a UNIX command can be stored
into a variable. The only requirement is that the first
character of value be an !. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xV6!expr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 6 by one. To escape the special
meaning of ! as the first character of value, precede it
with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return
code from the execution of a UNIX command (! com­
mand) or nonzero value, respectively, to the specified
label. The two examples below both search for the
next five lines containing the string size.

xc [switch 1

xv55
: I
/size/
xV5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is I, output from the p and null commands is
crunched; if switch is 0 it isn't. Without an argument,
xc reverses switch. Initially switch is set for no
crunching. Crunched output has strings of tabs and
blanks reduced to one blank and blank lines
suppressed.

- 3-

BFS(l) BFS(l)

SEE ALSO
csplit(l), ed(l), regcmp(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self­
explanatory error messages when prompting is on.

- 4 -

CAL (1) CAL (1)

NAME
cal - print calendar

SYNOPSIS
cal [month 1 year

DESCRIPTION

BUGS

Cal prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. Ye aT can be
between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

The year is always considered to start in January even though this
is historically naive.
Beware that "cal 78)J refers to the early Christian era, not the
20th century.

- 1 -

CAT (1) CAT (1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u 1 [-8 1 file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard out­
put. Thus:

cat file

prints the file, and:

cat filel file2 > file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat
reads from the standard input file. Output is buffered unless the
-u option is specified. The -8 option makes cat silent about
non-existent files. No input file may be the same as the output
file unless it is a special file.

WARNING
Command formats such as

cat filel file2 >filel
will cause the original data in fUel to be lost, therefore, take care
when using shell special characters.

SEE ALSO
cp(1), pr(l).

- 1 -

CB(1) CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [-8 1 [-j 1 [-I leng 1 [file ... 1

DESCRIPTION
Cb reads C programs either from its arguments or from the stan­
dard input and writes them on the standard output with spacing
and indentation that displays the structure of the code. Under
default options, cb preserves all user new-lines. Under the -8 flag
cb canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language. The - j flag causes split lines to
be put back together. The -I flag causes cb to split lines that are
longer than ieng.

SEE ALSO
cc(1).

BUGS

The C Programming Language by B. W. Kernighan and D. M.
Ritchie.

Punctuation that is hidden in preprocessor statements will cause
indentation errors.

- 1 -

CC(1) CC (1)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file ...

DESCRIPTION
Cc is the UNIX PC Portable C compiler. It accepts several types
of arguments.

Arguments whose names end with .c are taken to be C source pro­
grams; they are compiled, and each object program is left on the
file whose name is that of the source with .0 substituted for .c.
The .0 file is normally deleted, however, if a single C program is
compiled and loaded all at once.

In the same way, arguments whose names end with .s are taken to
be assembly source programs and are assembled, producing a .0

file.

The following options are interpreted by cc. See ld(1) for link
editor options and CPP (1) for more preprocessor options.

-# Display without executing each command that cc gen­
erates.

-c Suppress the link edit phase of the compilation, and force
an object file to be produced even if only one program is
compiled.

-E Run only cpp(l) on the named C programs, and send the
result to the standard output.

-g Cause the compiler to generate additional information
needed for the use of sdb (1).

-ooutjt"le
Produce an output obj ect file named outfile. The name
of the default file is a.out. This is a link editor option.

-0 Invoke an object-code optimizer.

-p Arrange for the compiler to produce code which counts
the number of times each routine is called; also, if link
editing takes place, replace the standard startoff routine
by one which automatically calls mon£tor(3C) at the
start and arranges to write out a mon.out file at normal
termination of execution of the object program. An exe­
cution profile can then be generated by use of proj(1).

-p Run only cpp(l) on the named C programs, and leave
the result on corresponding files suffixed .i.

-S Compile the named C programs, and leave the
assembler-language output on corresponding files suffixed
.s.

- W c,argl [,arg2 .•.]
Hand off the argument[s] argz" to pass c where c is one of
[p02al] indicating the preprocessor, complier, optimizer,
assembler, or link editor, respectively. For example,

- 1 -

CC(l)

FILES

CC (1)

- Wa,-m passes -m to the assembler.

The C language standard was extended to include arbitrary length
variable names. The -T option "-Wp,-T -WO,-XT" will
cause the current compiler to behave the same as previous com­
pilers with respect to the length of variable names.

-68010
Generate code for the mc68010 processor.

-68000
Generate code for the mc68000 processor.

-v Verbose. Print pass names as they are performed.

- T Truncate variable names to eight characters.

-w Tell the linker (ld) not to print warnings about symbols
that partially matched.

The C compiler uses one of three code generators for the

CPU =xxxxx,FPU =yyyyy

where CPU indicates the central processor to generate for and
FPU indicates the style of floating-point math to use. xxxxx must
currently be 68010, and yyyyy may be 68881 or SOFTWARE.
The FPU parameter may be deleted, the default is SOFTWARE.
The CENVIRON variable should always be set to the appropriate
values in the .profile or .Kshrc files.

Other arguments are taken to be either link editor option argu­
ments, C preprocessor option arguments, or C-compatible object
programs, typically produced by an earlier cc run, or perhaps
libraries of C-compatible routines. These programs, together with
the results of any compilations specified, are linked (in the order
given) to produce an executable program with the name a.out.

Note that modules appear to ld in the same order they (or their
source code version) appear to cc. Thus a library or object file
should appear in the cc argument list after any module that refers
to it.

file.c
file.o
file.s
a.out
/tmp/ctm*
/lib/cpp
/lib/ccom
/lib/optim
/bin/as
/bin/ld
/lib/crtO.o
/lib/crts.o
/lib/mcrtO.o
/lib /libc.a
/lib/libp/lib/* .a

input file
object file
assembly language file
linked output
temporary
C preprocessor cpp (1)
compiler
optional optimizer
assembler, as(1)
link editor, ld(1)
runtime startoff
shared library startoff
profiling startoff
standard C library, see section 3
profiled versions of libraries

- 2 -

CC (1) CC (1)

/lib/crts.o shared library startoff
/lib/mcrtO.o profiling startoff
/lib/libc.a standard C library, see section 3
/lib /libp /lib /*.a profiled versions of libraries

SEE ALSO

NOTES

The C Programming Language by B. W. Kernighan and D. M.
Ritchie.
adb(1), cpp(1), as(1), ld(l), prof(l), monitor(3C), shlib(4).

By default, the return value from a C program is completely ran­
dom. The only two guaranteed ways to return a specific value are
to explicitly call exit(2) or to leave the function mainO with a
"return express£on;" construct.

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self­
explanatory. Occasional messages may be produced by the assem­
bler or the link editor.

The optimizer may produce incorrect code if one asm() routine
requires a jump to a label in another asm() routine. The optim­
izer should be turned off for these code segments.

- 3 -

CDC!) CD (1)

NAME
cd - change working directory

SYNOPSIS
cd [directory 1

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME
is used as the new working directory. If directory specifies a com­
plete path starting with /, ., •• , directory becomes the new work­
ing directory. If neither case applies, cd tries to find the desig­
nated directory relative to one of the paths specified by the
$CDP ATH shell variable. $CDP ATH has the same syntax as, and
similar semantics to, the $PATH shell variable. Cd must have
execute (search) permission in directory.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal command;
therefore, it is recognized and internal to the shell.

SEE ALSO
pwd(l), sh(l), chdir(2).

- 1 -

CDC (1) CDC (1)

NAME
cdc - change the delta commentary of an sees delta

SYNOPSIS
cdc -rSID [-m[mrlistlJ [-y[commentlJ files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the
-r key letter, of each named sees file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(l) com­
mand (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in the
directory were specified as a named file, except that non-Sees files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read (see WARNINGS); each line of the standard
input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of
keyletter arguments, and file names.

All the described keyletter arguments apply independently to each
named file:

-rSID

-m[mrlist]

Used to specify the sees IDentification
(SID) string of a delta for which the delta
commentary is to be changed.

If the sees file has the v flag set (see
admin(l)) then a list of MR numbers to be
added and/or deleted in the delta commen­
tary of the SID specified by the - r key letter
may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in
the same manner as that of delta(l). In
order to delete an MR, precede the MR
number with the character ! (see EXAM­
PLES). If the MR to be deleted is currently
in the list of MRs, it is removed and
changed into a "comment" line; A list of
all deleted MRs is placed in the comment
section of the delta commentary and pre­
ceded by a comment line stating that they
were deleted.

If -m is not used and the standard input is
a terminal, the prompt MRs? is issued on
the standard output before the standard
input is read; if the standard input is not a
terminal, no prompt is issued. The MRs?
prompt always precedes the comments?
prompt (see -y keyletter).

- 1 -

eD e (1) CD e (1)

MRs in a list are separated by blanks
and/or tab characters. An unescaped new­
line character terminates the MR list.

Note that if the v flag has a value (see
admin(l)), it is taken to be the name of a
program (or shell procedure) which vali­
dates the correctness of the MR numbers.
If a non-zero exit status is returned from
the MR number validation program, cdc
terminates and the delta commentary
remains unchanged.

-y[comment] Arbitrary text used to replace the
comment(s) already existing for the delta
specified by the -r keyletter. The previous
comments are kept and preceded by a com­
ment line stating that they were changed.
A null comment has no effect.

If - y is not specified and the standard
input is a terminal, the prompt com­
ments? is issued on the standard output
before the standard input is read; if the
standard input is not a terminal, no prompt
is issued. An unescaped new-line character
terminates the comment text.

The exact permissions necessary to modify the sees file are
documented in the Source Code Control System User's
Gu£de. Simply stated, they are either (1) if you made the
delta, you can change its delta commentary; or (2) if you
own the file and directory you can modify the delta com­
mentary.

EXAMPLES
cdc -rl.B -m"bI78-12345 !bI77-54321 bI79-00001" -ytrouble
s.file

adds b178-12345 and bI79-00001 to the MR list, removes b177-
54321 from the MR list, and adds the comment trouble to delta
1.6 of s.file.

cdc -rl.B s.file
MRs? !bI77-54321 b178-12345 bI79-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If sees file names are supplied to the cdc command via the stan­
dard input (- on the command line), then the -m and -y
keyletters must also be used.

x-file (see delta(l))
z-file (see delta(1))

- 2 -

CDC (1) CDC (1)

SEE ALSO
admin(l), delta(l), get(1), help(l), prs(l), sccsfile(4).
Source Code Control System User's Guide in the UNIX System
User's Guide.

DIAGNOSTICS
Use help(1) for explanations.

- 3 -

CFLOW(1) CFLOW(l)

NAME
cflow - generate C flow graph

SYNOPSIS
cHow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION
Cftow analyzes a collection of C, YACC, LEX, assembler, and
object files and attempts to build a graph charting the external
references. Files suffixed in .y, .1, .c, and .i are YACC1d, LEX1d,
and C-preprocessed (bypassed for .i files) as appropriate and then
run through the first pass of lint(l). (The -I, -D, and -U
options of the C-preprocessor are also understood.) Files suffixed
with .s are assembled and information is extracted (as in .0 files)
from the symbol table. The output of all this non-trivial process­
ing is collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, fol­
lowed by a suitable number of tabs indicating the level. Then the
name of the global (normally only a function not defined as an
external or beginning with an underscore; see below for the -i
inclusion option) a colon and its definition. For information
extracted from C source, the definition consists of an abstract type
declaration (e.g., char *), and, delimited by angle brackets, the
name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file
name and location counter under which the symbol appeared (e.g.,
text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent refer­
ences to that name contain only the reference number of the line
where the definition may be found. For undefined references, only
< > is printed.

Af3 an example, given the following in file. c :

int i;

mainO
{

}

fO
{

}

the command

fO;
gO;
fO;

i=hO;

cflow file.c

- 1 -

CFLOW(l) CFLOW(1)

produces the the output

1 main: intO, <file.c 4>
2 f: intO, <file.c 11>
3 h: <>
4 i: intI <file.c 1>
5 g: <>

When the nesting level becomes too deep, the -e option of pr(l)
can be used to compress the tab expansion to something less than
every eight spaces.

The following options are interpreted by cflow:

-r Reverse the "caller:callee" relationship producing an
inverted listing showing the callers of each function. The
listing is also sorted in lexicographical order by callee.

-ix Include external and static data symbols. The default is
to include only functions in the flow graph.

-i_ Include names that begin with an underscore. The default
is to exclude these functions (and data if -£x is used).

-dnum The num decimal integer indicates the depth at which
the flow graph is cut off. By default this is a very large
number. Attempts to set the cutoff depth to a nonposi­
tive integer will be met with contempt.

DIAGNOSTICS
Complains about bad options. Complains about mUltiple
definitions and only believes the first. Other messages may come
from the various programs used (e.g., the C-preprocessor).

SEE ALSO

BUGS

as(l), cc(1t lex(l), lint(l), nm(1), pr(l), yacc(l).

Files produced by lex(l} and yacc(l) cause the reordering of line
number declarations which can confuse cflow. To get proper
results, feed cflow the yacc or lex input.

- 2 -

CFONT(l) (AT&T UNIX PC only) CFONT(l)

NAME
cfont - convert fonts to ASCII and vice-versa

SYNOPSIS
cfont binaryfont > asciifont
cfont asciifont > binaryfont

DESCRIPTION
C/ont converts to and from the system font file format (see
/ont(4)). When asked to decode a binary font, a line-oriented
ASCII file is produced. An example of such a file is included here.

EXAMPLE
magic Ox18e
flags OxO
hs 26
vs 38
basel 24

############### Character Ox21, 041, 33 !!!!!!!!!
!
char 33
hs 3
vs 19
ha 3
va -19
hi 8
VI 0
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits ***
bits
bits
bits
bits ***
bits ***
bits ***

############### Character Ox24, 044, 36 $ $ $ $ $ $
$ $ $ $
char 36
hs 13
vs 26
ha 3

- 1 -

CFONT(l) (AT&T UNIX PC only) CFONT(l)

va -23
hi 17
vi 0
bits * *
bits * *
bits * *
bits *******
bits ** * * **
bits * * * **
bits * * * **
bits * * * **
bits ** * *
bits ***** *
bits ******
bits ******
bits * ****
bits * * ***
bits * * ***
bits * * **
bits * * *
bits ** * * *
bits ** * * *
bits ** * * **
bits ** * * ***
bits ********
bits * *
bits * *
bits * *
Blank lines and lines beginning with # are ignored. The first lines
of the file form the font header. These are automatically set to
their default values whenever cfont writes a binary font. The
headers hs, vs, and ba.sel specify the effective horizontal size,
vertical size and baseline offset for the font as a whole. The rest
of the file consists of up to 96 char definitions, each one beginning
with the word char followed by the character number (0-95).
After the character number has been specified, the various charac­
ter definition fields are given followed by vs number of bits state­
ments, each specifying exactly hs number of pixel columns.

SEE ALSO

BUGS

font(4), window(7).

It is currently impossible to specify the font flags or magic
number.

- 2 -

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode files

DESCRIPTION
The permissions of the named files are changed according to
mode, which may be absolute or symbolic. An absolute mode is
an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who 1 op perms·ssion [op perm£ssion 1
The who part is a combination of the letters u (for user's permis­
sions), g (group) and ° (other). The letter a stands for ugo, the
default if who is omitted.

Op can be + to add permission to the file's mode, - to take
away perms·ssion, or == to assign permission absolutely (all other
bits will be reset).

Permission is any combination of the letters r (read), w (write), x
(execute), s (set owner or group ID), and t (save text, or sticky); u,
g, or ° indicate that permission is to be taken from the current
mode. Omitting permission is only useful with = to take away
all permissions.

Multiple symbolic modes separated by commas may be given.
Operations are performed in the order specified. The letter s is
only useful with u or g and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second
makes a file executable:

chmod o-w file

chmod +x file

SEE ALSO
1s(1), chmod(2).

- 1 -

CHOWN(l) CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. .

chgrp group file .. .

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may
be either a decimal user ID or a login name found in the password
file.

Chgrp changes the group ID of the files to group. The group may
be either a decimal group ID or a group name found in the group
file.

/etc/passwd
/etc/group

SEE ALSO
chown(2), group(4), passwd(4).

- 1 -

CLEAR (I)

NAME
clear - clear terminal screen

SYNOPSIS
clea.r

DESCRIPTION

CLEAR(I)

Clear prints whatever string clears your terminal's screen. The
program obtains this string from the termcap(5) database, using
the TERM environment variable to determine the kind of termi­
nal.

FILES
/etc/termcap terminal capability database

SEE ALSO
termcap(5)-terminal description database
sh(1)-export command

- 1 -

CMP(l) CMP (1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I 1 [-8 1 filel file2

DESCRIPTION
The two files are compared. (If fUel is -, the standard input is
used.) Under default options, cmp makes no comment if the files
are the same; if they differ, it announces the byte and line number
at which the difference occurred. If one file is an initial subse­
quence of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes
(octal) for each difference.

-8 Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2
for an inaccessible or missing argument.

- 1 -

COL(1) COL(1)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-bfpx 1

DESCRIPTION
Col reads from the standard input and writes onto the standard
output. It performs the line overlays implied by reverse line feeds
(ASCII code ESC-7), and by forward and reverse half-line-feeds
(ESC.9 and ESC-S). Col is particularly useful for filtering mul­
ticolumn output made with the .rt command of nroff and output
resulting from use of the tbl(1) preprocessor.

If the -b option is given, col assumes that the output device in
use is not capable of backspacing. In this case, if two or more
characters are to appear in the same place, only the last one read
will be output.

Although col accepts half-line motions in its input, it normally
does not emit them on output. Instead, text that would appear
between lines is moved to the next lower full-line boundary. This
treatment can be suppressed by the -f (fine) option; in this case,
the output from col may contain forward half-line-feeds (ESC.9),
but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs
on output wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed
by col to start and end text in an alternate character set. The
character set to which each input character belongs is remem­
bered, and on output SI and so characters are generated as
appropriate to ensure that each character is printed in the correct
character set.

On input, the only control characters accepted are space, back­
space, tab, return, new-line, SI, SO, VT (\013), and ESC followed
by 7, S, or g. The VT character is an alternate form of full
reverse line-feed, included for compatibility with some earlier pro­
grams of this type. All other non-printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences
found in its input; the -p option may be used to cause col to out­
put these sequences as regular characters, subject to overprinting
from reverse line motions. The use of this option is highly
discouraged unless the user is fully aware of the textual position of
the escape sequences.

SEE ALSO

NOTES

nroff(1), tbl(l).

The input format accepted by col matches the output produced
by nroffwith either the -T37 or -Tip options. Use -T37 (and
the -f option of col) if the ultimate disposition of the output of
col will be a device that can interpret half-line motions, and -Tip
otherwise.

- 1 -

COL(1) COL (1)

BUGS
Cannot back up more than 128 lines.
Allows at most BOO characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the
first line of the document are ignored. As a result, the first line
must not have any superscripts.

- 2 -

eOMB(I) eOMB(I)

NAME
comb - combine sees deltas

SYNOPSIS
comb [-0] [-s] [-psid] [-clist] files

DESCRIPTION
Comb generates a shell procedure (see sh(1)) which, when run, will
reconstruct the given sees files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may
be specified in any order, but all key letter arguments apply to all
named sees files. If a directory is named, comb behaves as
though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be pro­
cessed; non-sees files and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed, but the effects of
any keyletter argument apply independently to each named file.

-pSID The sees IDentification string (SID) of the oldest delta
to be preserved. All older deltas are discarded in the
reconstructed file.

-ciist A list (see get(1) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get -e generated, this argument causes the
reconstructed file to be accessed at the release of the
delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor. Use of
the -0 key letter may decrease the size of the recon­
structed sees file. It may also alter the shape of the
delta tree of the original file.

-s This argument causes comb to generate a shell procedure
which, when run, will produce a report giving, for each
file: the file name, size (in blocks) after combining, origi­
nal size (also in blocks), and percentage change computed
by:

100 * (original - combined) / original
It is recommended that before any sees files are actu­
ally combined, one should use this option to determine
exactly how much space is saved by the combining pro­
cess.

If no keyletter arguments are specified, comb will preserve only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

- 1 -

COMB(I) COMB (I)

FILES
s.COMB
comb?????

The name of the reconstructed sces file.
Temporary.

SEE ALSO
admin(1), delta{l), get(l), help(1), prs(l), sccsfile(4).
Source Code Control System User's Guide in the UNIX System
User's Guide.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not
save any space; in fact, it is possible for the reconstructed file to
actually be larger than the original.

- 2 -

COMM(l) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123 1 1 filel file2

DESCRIPTION
Comm reads fUel and file2, which should be ordered in ASCII col­
lating sequence (see sort(I)), and produces a three-column output:
lines only in fUel; lines only in file2; and lines in both files. The
file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column.
Thus comm -12 prints only the lines common to the two files;
comm -23 prints only lines in the first file but not in the second;
comm -123 is a no-op.

SEE ALSO
cmp(l), difI(I), sort(1) , uniq(l).

- 1 -

CP(l) CP(l)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp filel [file2 ... J target
In file I [file2 ... J target
mv filel [file2 ... J target

DESCRIPTION
Filel is copied (linked, moved) to target. Under no circumstance
can fUel and target be the same (take care when using sh{l)
metacharacters). If target is a directory, then one or more files
are copied (linked, moved) to that directory.

If mv determines that the mode of target forbids writing, it will
print the mode (see chmod(2)) and read the standard input for one
line (if the standard input is a terminal); if the line begins with y,
the move takes place; if not, mv exits.

Only mv will allow filel to be a directory, in which case the direc­
tory rename will occur only if the two directories have the same
parent.

SEE ALSO
cpio(l), rm(l), chmod(2).

DIAGNOSTICS

BUGS

Bad copy generally means I/O or other system error.

If file1 and target lie on different file systems, mv must copy the
file and delete the original. In this case the owner name becomes
that of the copying process and any linking relationship with other
files is lost.

Ln will not link across file systems.

- I -

CPIO (1) CPIO (1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acvBTsizeOoffset 1 < name-list >collection

cpio -i [cdmrstuvRBTsizeOoffsetf6 1 [patterns 1
< collection

cpio -p [adlmruv 1 directory

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of
path names and copies those files onto the standard output
together with path name and status information.

Cpio -i (copy in) extracts files from the standard input which is
assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. Patterns are given in the
name-generating notation of sh(1). In patterns, meta-characters
1, *, and [...] match the slash / character. Multiple patterns
may be specified and if no patterns are specified, the default for
patterns is * (i.e., select all files). The extracted files are condi­
tionally created and copied into the current directory tree based
upon the options described below.

When copying onto floppy diskettes, cpz"o records the number in
sequence in the volume header of each floppy in the set. If in a
subsequent cpio -i operation a floppy is loaded out of sequence,
cpio pauses and prompts for the correct floppy.

Cpio -p (pass) reads the standard input to obtain a list of path
names of files that are conditionally created and copied into the
destination directory tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been
copied.

B Input/output is to be blocked 5,120 bytes to the record.

d Directories are to be created as needed.

c Write header information in ASCII character form for por­
tability.

K Reads only the first file of a cpio set. This option is used
only with the -i option.

r Interactively rename files. If the user types a null line,
the file is skipped.

R Allow files and directories with absolute path names to be
redirected on input to the current working directory (see
pwd (1)) by removing the leading / from the path name.
This option is used only with the -i option.

o Set the logical file position of where the transfer is to
begin. The 0 is followed by an offset in blocks. For
example,

- 1 -

CPIO (1) CPIO (1)

cpio -oc 0128 > /dev/rfp021

will begin the output at block number 128.

t Print a table of contents of the input. No files are
created.

T Provides a specific buffer size for the cpio operation. The
size of the buffer, in kilobytes (lKB = l024B), follows
the T. For example,

cpio -ict T64 < /dev /rfp021

uses a 64KB buffer while it reads the filenames from the
cpio set. Note that if no buffer size is specified, 64KB
buffers are used.

u Copy unconditionally (normally, an older file will not
replace a newer file with the same name).

v Verb ose: causes a list of file names to be printed. When
used with the t option, the table of contents looks like the
output of an Is -I command (see Is(1)).

x Halt the cpio operation as soon as one filename in the pat­
tern list is restored (otherwise the entire cpio set is read).
This option is used only with the -i option.

Whenever possible, link files rather than copying them.
Usable only with the - p option.

m Retain previous file modification time. This option is
ineffective on directories that are being copied.

f Copy in all files except those in patterns.

s Swap bytes. Use only with the -i option.

S Swap halfwords. Use only with the -i option.

b Swap both bytes and halfwords. Use only with the -i
option.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only
useful with -i (copy in).

EXAMPLES
The first example below copies the contents of a directory into an
archive; the second duplicates a directory hierarchy:

Is I cpio -0 >/dev/rfp021

cd olddir
find • - depth - print I cpio - pdl newdir

The trivial case "find • -depth -print I CplO -oB
> / dev /rfp021)) can be handled more efficiently by:

find • - cpio / dev /rfp021

SEE ALSO

BUGS

ar(1), find(1), cpio(4).

Path names are restricted to 128 characters. If there are too
many unique linked files, the program runs out of memory to keep

- 2 -

CPIO (1) CPIO (1)

track of them and, thereafter, linking information is lost. Only
the super-user can copy special files.

- 3-

CPP (1) cpp (1)

NAME
cpp - the C language preprocessor

SYNOPSIS
/lib/ cpp [option ...] [ifile [ofile]]
/lib/mcpp -

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first
pass of any C compilation using the cc(1) command. Thus the
output of cpp is designed to be in a form acceptable as input to
the next pass of the C compiler. As the C language evolves, cpp
and the rest of the C compilation package will be modified to fol­
low these changes. Therefore, the use of cpp other than in this
framework is not suggested. The preferred way to invoke cpp is
through the cC(l) command since the functionality of cpp may
someday be moved elsewhere. See m4(1) for a general macro pro­
cessor.

Cpp optionally accepts two file names as arguments. [file and
ofile are respectively the input and output for the preprocessor.
They default to standard input and standard output if not sup­
plied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control
information used by the next pass of the C compiler.

-c By default, cpp strips C-style comments. If the -C
option is specified, all comments (except those found on
cpp directive lines) are passed along.

-Uname
Remove any initial definition of name, where name is a
reserved symbol that is predefined by the particular
preprocessor. The current list of these possibly reserved
symbols includes:

-Dname

operating system:
hardware:

UNIX variant:

-Dname=def

ibm, gcos, os, tss, unix
interdata, pdpll, u370, u3b, vax,
mc68K
RES, RT

Define name as if by a #define directive. If no =def is
given, name is defined as 1.

-Idir Change the algorithm for searching for #include files
whose names do not begin with / to look in dir before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in " " will be
searched for first in the directory of the ifile argument,
then in directories named in -I options, and last in direc­
tories on a standard list. For #include files whose names
are enclosed in < >, the directory of the (file argument is
not searched.

- 1 -

cpp (1) CPP(l)

Two special names are understood by cpp. The name
__ LINE __ is defined as the current line number (as a decimal
integer) as known by cpp, and __ FILE_ _ is defined as the
current file name (as a C string) as known by cpp. They can be
used anywhere (including in macros) just as any other defined
name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ••• , arg) token-string
Notice that there can be no space between name and the
(. Replace subsequent instances of name followed by a (,
a list of comma separated tokens, and a) by token-string
where each occurrence of an arg in the token-string is
replaced by the corresponding token in the comma
separated list.

#undef name
Cause the definition of name (if any) to be forgotten from
now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will
then be run through cpp). When the <filename> nota­
tion is used, filename is only searched for in the standard
places. See the -I option above for more detail.

#line integer-constant "filename"

#endir

Causes cpp to generate line control information for the
next pass of the C compiler. Integer-constant is the line
number of the next line and filename is the file where it
comes from. If" filename" is not given, the current file
name is unchanged.

Ends a section of lines begun by a test directive (#if,
#ifdef, or #ifndef). Each test directive must have a
matching #endir.

#irder name
The lines following will appear in the output if and only if
name has been the subject of a previous #define without
being the subject of an intervening #under.

#irnder name
The lines following will not appear in the output if and
only if name has been the subject of a previous #define
without being the subject of an intervening #under.

#ir constant-expression
Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary
non-assignment C operators, the ?: operator, the unary -,
!, and - operators are all legal in constant-expression.
The precedence of the operators is the same as defined by

- 2 -

CPP(l) CPP(I)

FILES

the C language. There is also a unary operator defined,
which can be used in constant-expressz"on in these two
forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive.
Only these operators, integer constants, and names which
are known by cpp should be used in constant-expresst"on.
In particular, the sizeof operator is not available.

#else Reverses the notion of the test directive which matches
this directive. So if lines previous to this directive are
ignored, the following lines will appear in the output.
And vice versa.

The test directives and the possible #else directives can be
nested.

jusr jinclude

SEE ALSO

standard directory for #include files

cC(l), m4(1).

DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self­
explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

When newline characters were found in argument lists for macros
to be expanded, previous versions of cpp put out the new lines as
they were found and expanded. The current version of cpp
replaces these new lines with blanks to alleviate problems that the
previous versions had when this occurred.

- 3-

CRYPT(l) (Domestic Version Only) CRYPT(l)

NAME
crypt - encode / decode

SYNOPSIS
crypt [password 1

DESCRIPTION

FILES

This command is available only in the domestic (U.S.) version of
the UNIX PC software. Crypt reads from the standard input and
writes on the standard output. The password is a key that selects
a particular transformation. If no password is given, crypt
demands a key from the terminal and turns off printing while the
key is being typed in. Crypt encrypts and decrypts with the same
key:

crypt key < clear > cypher
crypt key < cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the
editor e d in encryption mode.

The security of encrypted files depends on three factors: the fun­
damental method must be hard to solve; direct search of the key
space must be infeasible; "sneak paths" by which keys or clear
text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the
machine is deliberately designed to be expensive, i.e. to take a
substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can
be read by expending only a substantial fraction of five minutes of
machine time.

Since the key is an argument to the crypt command, it is poten­
tially visible to users executing pS(l) or a derivative. To minimize
this possibility, crypt takes care to destroy any record of the key
immediately upon entry. The choice of keys and key security are
the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l), makekey(l).

If output is piped to nroff and the encryption key is not given on
the command line, crypt can leave terminal modes in a strange
state (see sttY(l)).
If two or more files encrypted with the same key are concatenated
and an attempt is made to decrypt the result, only the contents of
the first of the original files will be decrypted correctly.

- 1 -

CSPLIT (1) CSPLIT (1)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [••• argn]

DESCRIPTION
Csplit reads file and separates it into n+l sections, defined by the
arguments argl. •• argn. By default the sections are placed in
xxOO • •• xxn (n may not be greater than 99). These sections
get the following pieces of file:

00: From the start of file up to (but not including) the
line referenced by argl.

01: From the line referenced by argl up to the line
referenced by arg2.

n+1: From the line referenced by argn to the end of file.

The options to csplit are:

-8 Csplit normally prints the character counts for
each file created. If the -8 option is present,
csplit suppresses the printing of all character
counts.

-k Csplit normally removes created files if an error
occurs. If the - k option is present, csplit leaves
previously created files intact.

-f prefix If the -f option is used, the created files are
named prefix 00 •• . prefixn. The default is
xxOO ••• xxn.

The arguments (argl ••• argn) to csplit can be a combination
of the following:

/ rexp / A file is to be created for the section from the
current line up to (but not including) the line con­
taining the regular expression rexp. The current
line becomes the line containing rexp. This argu­
ment may be followed by an optional + or - some
number of lines (e.g., /Page/ -5).

%rexp%
This argument is the same as / rexp /, except that
no file is created for the section.

lnno A file is to be created from the current line up to
(but not including) lnno. The current line
becomes lnno.

{num} Repeat argument. This argument may follow any
of the above arguments. If it follows a rexp type
argument, that argument is applied num more
times. If it follows lnno, the file will be split every
lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the Shell in the appropriate quotes.

- 1 -

CSPLIT (1) CSPLIT (1)

Regular expressions may not contain embedded new-lines. esplit
does not affect the original file; it is the users responsibility to
remove it.

EXAMPLES
csplit -f cobol file '/procedure division/' /parS./ /par16./

This example creates four files, cobolOO ••. cobolO3. After
editing the "split" files, they can be recombined as follows:

cat coboI0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000
lines. The -k option causes the created files to be retained if
there are less than 10,000 lines; however, an error message would
still be printed.

csplit -k prog.c '%main(%' 'r}/+I' {20}

Assuming that prog.c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
will create a file containing each separate C routine (up to 21) in
prog.c.

SEE ALSO
ed(l), sh(1), regexp(S).

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a line
between the current position and the end of the file.

- 2 -

CU(IC) CU(IC)

NA~{E

cu - call another UNIX system

SYNOPSIS
ell [-sspeed 1 [-Hine 1 [-h 1 [-t 1 [-d 1 [-m 1 [-ol-e 1
telno I dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non­
UNIX system. It manages an interactive conversation with possi­
ble transfers of ASCII files. Speed gives the transmission speed
(110, 150, 300, 600, 1200, 4800, 9600); 300 is the default value.
Most of our modems are either 300 or 1200 baud. For dial out
lines, cu will choose a modem speed (300 or 1200) as the slowest
available which will handle the specified transmission speed.
Directly connected lines may be set to speeds higher than 1200
baud.

The -I value may be used to specify a device name for the com­
munications line device to be used. This can be used to override
searching for the first available line having the right speed. The-s
option allows the user to override the line speed specified in the
file /usr/lib/uucp/L-devices. However, if the -s option is not used,
the line speed will be taken from the L-devices file. The - h
option emulates local echo, supporting calls to other computer sys­
tems which expect terminals to be in half-duplex mode. The-t
option is used when dialing an ASCII terminal which has been set
to auto-answer. Appropriate mapping of carriage-returns to
carriage-return-line-feed pairs is set. The -d option cause diag­
nostic traces to be printed. The -m option specifies a direct line
which has modem control. The -e (-0) option designates that
even (odd) parity is to be generated for data sent to the remote.
The -d option causes diagnostic traces to be printed. Telno is
the telephone number, with '=' (equal signs) for secondary dial
tone. ':' (colons) for pausing 10 seconds, and for pausing 2 seconds
at appropriate places. The string dir for telno may be used for
directly connected lines, and implies a null ACU. Using dir
insures that a line has been specified by the -1 option. When
using the internal modem line, phO and phI make sure the phone
status of the line to be used shows DATA, otherwise the call will
fail. The phone line supports 300 and 1200 for the -s option.

Cu will try each line listed in the file /usr/lib/uucp/L-devices
until it finds an available line with appropriate attributes or runs
out of entries. After making the connection, cu runs as two
processes: the transmit process reads data from the standard input
and, except for lines beginning with -, passes it to the remote sys­
tem; the receive process accepts data from the remote system
and, except for lines beginning with -, passes it to the standard
output. Normally, an automatic DC3/DC1 protocol is used to con­
trol input from the remote so the buffer is not overrun. Lines
beginning with - have special meanings.

- 1 -

CU(IC) CU (IC)

FILES

The transmit process interprets the following:

terminate the conversation.

-! escape to an interactive shell on the local
system.

-!cmd. . . run cmd on the local system (via sh -c).

-$cmd. . . run cmd locally and send its output to the
remote system.

-%take from [to 1 copy file from (on the remote system) to
file to on the local system. If to is omitted,
the from argument is used in both places.

-%put from [to 1 copy file from (on local system) to file to
on remote system. If to is omitted, the
from argument is used in both places.

send the line - ... to the remote system.

-%nostop turn off the DC3/DC I input control protocol
for the remainder of the session. This is
useful in case the remote system is one
which does not respond properly to the DC3
and DCI characters,

The receive process normally copies data from the remote system
to its standard output. A line from the remote that begins with
-> initiates an output diversion to a file. The complete sequence
is:

-> [> 1: file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to
file. The trailing -> terminates the diversion.

The use of -%put requires sttY(I) and cat(l) on the remote side.
It also requires that the current erase and kill characters on the
remote system be identical to the current ones on the local system.
Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo (I) and cat(l)
on the remote system. Also, stty tabs mode should be set on the
remote system if tabs are to be copied without expansion.

/usr /lib/uucp/L-devices
/usr /spool/uucp /LCK .. (tty-device)
/dev/null

SEE ALSO
cat(l), echo(l), stty(1), uucp(1C).

DIAGNOSTICS
E~it code is zero for normal exit, non-zero (various values) other­
WIse.

- 2 -

CU(IC) CU (IC)

BUGS
Cu buffers input internally.
There is an artificial slowing of transmission by cu during the
-%put operation so that loss of data is unlikely.

- 3-

CUT (1) CUT (1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -c list [file1 file2 ...]
cut -flist [-d char] [-8] [file1 file2 ...]

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of
a file; in data base parlance, it implements the projection of a rela­
tion. The fields as specified by list can be fixed length, i.e., char­
acter positions as on a punched card (-c option), or the length
can vary from line to line and be marked with a field delimiter
character like tab (-f option). Cut can be used as a filter; if no
files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in
increasing order), with optional - to indicate ranges as in
the -0 option of nroff /troff for page ranges; e.g., 1,4,7;
1-3,8; -5,10 (short for 1-5,10); or 3- (short for third
through last field).

-c Hst The list following -c (no space) specifies character posi­
tions (e.g., -cl-72 would pass the first 72 characters of
each line).

-f list The list following -f is a list of fields assumed to be
separated in the file by a delimiter character (see -d);
e.g. , -fl,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact
(useful for table subheadings), unless -8 is specified.

-d char The character following -d is the field delimiter (-f
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

-8 Suppresses lines with no delimiter characters in case of
-f option. Unless specified, lines with no delimiters will
be passed through untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file,
or paste(l) to put files together column-wise (i.e., horizontally).
To reorder columns in a table, use cut and paste.

EXAMPLES
cut -d: -f1,5 /etc/passwd

name='who am i I cut -£1 -d" ",

- 1 -

mapping of user IDs to
names

to set name to current
login name.

CUT (1)

DIAGNOSTICS
l£ne too long

CUT (1)

A line can have no more than 511 charac­
ters or fields.

bad l£st for c / f option

no fields

SEE ALSO
grep(I), paste(1).

Missing -c or -f option or incorrectly
specified list. No error occurs if a line has
fewer fields than the list calls for.

The bOst is empty.

- 2 -

CW(l) CW(l)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-lxx 1 [-rxx 1 [-fn 1 [-t 1 [+t 1 [-d 1 [files 1
checkcw [-lxx 1 [-rxx 1 files

DESCRIPTION
Cw is a preprocessor for troff (not included on the UNIX PC) input
files that contain text to be typeset in the constant-width (CW)
font.

Text typeset with the CW font resembles the output of terminals
and of line printers. This font is used to typeset examples of pro­
grams and of computer output in user manuals, programming
texts, etc. (An earlier version of this font was used in typesetting
The C Programming Language by B. W. Kernighan and D. M.
Ritchie.) It has been designed to be quite distinctive (but not
overly obtrusive) when used together with the Times Roman font.

Because the cw font contains a "non-standard" set of characters
and because text typeset with it requires different character and
inter-word spacing than is used for "standard" fonts, documents
that use the CW font must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$%&O"*+@·,/:;=?Ill-_M ,,<>{}#\

plus eight non-ASCII characters represented by four-character troff
names (in some cases attaching these names to "non-standard"
graphics):

Character

"Cents" sign
EBCDIC "not" sign
Left arrow
Right arrow
Down arrow
Vertical single quote
Control-shift indicator
Visible space indicator
Hyphen

Symbol

1
I

t

Troff Name

\(ct
\(no
\(<­
\(->
\(da
\(fm
\(dg
\(sq
\(hy

The hyphen is a synonym for the unadorned minus sign (-). Cer­
tain versions of cw rec.ognize two additional names: \(ua f.or an
up arr.ow (j) and \(lh f.or a diagonal left-up (home) arrow.

Cw rec.ognizes five request lines, as well as user-defined delimiters.
The request lines I.ook like troff macr.o requests, and are copied in
their entirety by cw onto its output; thus, they can be defined by
the user as troff macr.os; in fact, the .CW and .CN macros should
be so defined (see HINTS bel.ow). The five requests are:

- 1 -

ew(1) eW(1)

.ow Start of text to be set in the ew font; .OW causes a
break; it can take precisely the same options, in precisely
the same format, as are available on the cw command
line .

. ON End of text to be set in the ew font; .ON causes a break;
it can take the same options as are available on the cw
command line .

. OD Change delimiters and/or settings of other options; takes
the same options as are available on the cw command
line .

• OP argl arg2 arg8 ••• argn
All the arguments (which are delimited like troff macro
arguments) are concatenated, with the odd-numbered
arguments set in the ew font and the even-numbered ones
in the prevailing font .

• PO argl arg2 arg8 ••• argn
Same as .OP, except that the even-numbered arguments
are set in the ew font and the odd-numbered ones in the
prevailing font.

The .CWand .CN requests are meant to bracket text (e.g., a pro­
gram fragment) that is to be typeset in the ew font "as is.)) Nor­
mally, cw operates in the transparent mode. In that mode, except
for the .CD request and the nine special four-character names
listed in the table above, every character between .CW and .CN
request lines stands for itself. In particular, cw arranges for
periods (.) and apostrophes (') at the beginning of lines, and
backslashes (\) everywhere to be "hidden" from troff. The tran­
sparent mode can be turned off (see below), in which case normal
troff rules apply; in particular, lines that begin with . and ' are
passed through untouched (except if they contain delimiters-see
below). In either case, cw hides the effect of the font changes gen­
erated by the .CW and .CN requests; cw also defeats all ligatures
(fi, ff, etc.) in the CW font.

The only purpose of the . CD request is to allow the changing of
various options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters
perform the same function as the .CW !-CN requests; they are
meant, however, to enclose CW "words" or "phrases" in running
text (see example under BUGS below). Cw treats text between
delimiters in the same manner as text enclosed by . cw /. CN
pairs, except that, for aesthetic reasons, spaces and backspaces
inside .CW!-CN pairs have the same width as other ew charac­
ters, while spaces and backspaces between delimiters are half as
wide, so they have the same width as spaces in the prevailing text
(but are not adjustable). Font changes due to delimiters are not
hidden.

Delimiters have no special meaning inside .CW !-CN pairs.

- 2 -

eW(l)

HINTS

eW(I)

The options are:

-lxx The one- or two-character string xx becomes the left del­
imiter; if xx is omitted, the left delimiter becomes
undefined, which it is initially.

-rxx Same for the right delimiter. The left and right delimiters
may (but need not) be different.

-fn The ew font is mounted in font position n; acceptable
values for n are I, 2, and 3 (default is 3, replacing the
bold font). This option is only useful at the beginning of
a document.

-t Turn transparent mode off.

+t Turn transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the
form of troff comment lines. This option is meant for
debugging.

Cw reads the standard input when no files are specified (or when
- is specified as the last argument), so it can be used as a filter.
Typical usage is:

cw files I troff ...

Checkcw checks that left and right delimiters, as well as the
.CW ;'CN pairs, are properly balanced. It prints out all offending
lines.

Typical definitions of the .CW and .CN macros meant to be used
with the mm(5) macro package:

.de CW

.DS I

.ps 9

.vs 1O.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

. de CN

.ta .5i Ii 1.5i 2i 2.5i 3i ...

. vs

.ps

.DE

At the very least, the . CW macro should invoke the troff no-fill
(.nf) mode.

When set in running text, the ew font is meant to be set in the
same point size as the rest of the text. In displayed matter, on
the other hand, it can often be profitably set one point smaller
than the prevailing point size (the displayed definitions of .CW
and .CN above are one point smaller than the running text on this
page). The ew font is sized so that, when it is set in 9-point,
there are 12 characters per inch.

- 3-

eW(I)

FILES

eW(I)

Documents that contain ew text may also contain tables and/or
equations. If this is the case, the order of preprocessing should be:
CW, tbl, and eqn. Usually, the tables contained in such docu­
ments will not contain any OW text, although it is entirely possi­
ble to have elements of the table set in the ow font; of course,
care must be taken that tbl(l) format information not be modified
by cw. Attempts to set equations in the OW font are not likely to
be either pleasing or successful.

In the OW font, overstriking is most easily accomplished with
backspaces: letting t- represent a backspace, dt-t-t yields ct.
(Because backspaces are half as wide between delimiters as inside
.CW /.CN pairs-see above-two backspaces are required for each
overstrike between delimiters.)

/usr /lib/font/ftOW OW font-width table

SEE ALSO
eqn(1), mmt(l), tbl(l), mm(5).

WARNINGS

BUGS

If text preprocessed by cw is to make any sense, it must be set on
a typesetter equipped with the OW font or on a STARE facility; on
the latter, the OW font appears as bold, but with the proper ew
spacing.

Only a masochist would use periods (.), backslashes (\), or double
quotes (") as delimiters, or as arguments to .CP and .PC.

Certain ew characters don 't concatenate gracefully with certain
Times Roman characters, e.g., a OW ampersand (&) followed by a
Times Roman comma (,); in such cases, judicious use of troff half­
and quarter-spaces (\/ and \ ") is most salutary, e.g., one should
use _&_\ A, (rather than just plain _&_,) to obtain &, (assuming
that _ is used for both delimiters).

Using cw with nroff is silly.

The output of cw is hard to read.

- 4 -

CXREF(I) CXREF (1)

NAME
cxref - generate C program cross reference

SYNOPSIS
cxref [options 1 files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross
reference table. Cxref utilizes a special version of cpp to include
#define'd information in its symbol table. It produces a listing
on standard output of all symbols (auto, static, and global) in
each file separately, or with the -c option, in combination. Each
symbol contains an asterisk (*) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to
their interpretation by cC(l)), the following options are interpreted
by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than
<num> (decimal) columns. This option will default to
80 if <num> is not specified or is less than 51.

-0 file Direct output to named file.

-8 Operate silently; does not print input file names.

-t Format listing for 80-column width.

/usr /lib/xcpp special version of C-preprocessor.

SEE ALSO
cc(l).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you
can't compile these files, anyway.

- 1 -

DATE(I) DATE(I)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]
date -

DESCRIPTION
If no argument is given, or if the argument begins with +, the
current date and time are printed. Otherwise, the current date is
set. The first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second
mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default
if no year is mentioned. The system operates in GMT. Date takes
care of the conversion to and from local standard and daylight
time.

If the argument begins with +, the output of date is under the
control of the user. The format for the output is similar to that of
the first argument to printf(3S). All output fields are of fixed size
(zero padded if necessary). Each field descriptor is preceded by %
and will be replaced in the output by its corresponding value. A
single % is encoded by %%. All other characters are copied to
the output without change. The string is always terminated with
a new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/ dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

date - sets the system time from the real time clock.

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

- 1 -

DATE (1)

DIAGNOSTICS
No perm£ssion

bad conversion

DATE (1)

if you aren't the super-user and you try to
change the date;

if the date set is syntactically incorrect;

bad format character if the field descriptor is not recognizable.

FILES
/dev/kmem

WARNING
It is a bad practice to change the date while the system is running
multi-user.

- 2 -

DC (1) DC (1)

NAME
dc - desk calculator

SYNOPSIS
de [file 1

DESCRIPTION
De is an arbitrary precIsion arithmetic package. Ordinarily it
operates on decimal integers, but one may specify an input base,
output base, and a number of fractional digits to be maintained.
The overall structure of de is a stacking (reverse Polish) calcula­
tor. If an argument is given, input is taken from that file until its
end, then from the standard input. The following constructions
are recognized:

number
The value of the number is pushed on the stack. A number
is an unbroken string of the digits 0-9. It may be preceded
by an underscore (_) to input a negative number. Numbers
may contain decimal points.

+_/*%A
The top two values on the stack are added (+), subtracted
(-), multiplied (*), divided U), remaindered (%), or
exponentiated (A). The two entries are popped off the
stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register
named x, where x may be any character. If the s is capi­
talized, x is treated as a stack and the value is pushed on
it.

Ix The value in register x is pushed on the stack. The register
x is not altered. All registers start with zero value. If the I
is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged. P interprets the top of the stack as an
ASCII string, removes it, and prints it.

r All values on the stack are printed.

q exits the program. If executing a string, the recursion level
is popped by two. If q is capitalized, the top value on the
stack is popped and the string execution level is popped by
that value.

x treats the top element of the stack as a character string
and executes it as a string of de commands.

X replaces the number on the top of the stack with its scale
factor.

[000] puts the bracketed ASCII string onto the top of the stack.

- 1 -

DC(1) DC (1)

<x >x =x
The top two elements of the stack are popped and com­
pared. Register x is evaluated if they obey the stated rela­
tion.

v replaces the top element on the stack by its square root.
Any existing fractional part of the argument is taken into
account, but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

The top value on the stack is popped and used as the
number radix for further input. I pushes the input base on
the top of the stack.

o The top value on the stack is popped and used as the
number radix for further output.

o pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a
non-negative scale factor: the appropriate number of places
are printed on output, and maintained during mUltiplica­
tion, division, and exponentiation. The interaction of scale
factor, input base, and output base will be reasonable if all
are changed together.

z The stack level is pushed onto the stack.

Z replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the
terminal) and executed.

; : are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n!:

[Ial +dsa*plaIO>y]sy
Osal
lyx

SEE ALSO
bc(1), which is a preprocessor for dc providing infix notation and a
C-like syntax which implements functions and reasonable control
structures for programs.

DIAGNOSTICS
x is unimplemented

w here x is an octal number.

stack empty
for not enough elements on the stack to do what was
asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

- 2 -

DC (1) DC (1)

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 3-

DD(l) DD (1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with pos­
sible conversions. The standard input and output are used by
default. The input and output block size may be specified to take
advantage of raw physical I/0.

opt£on
if-file
of=jz"le
ibs=n
obs=n
bs=n

ebs=n
skip=n
seek=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, supersed­
ing ibs and obs; also, if no conversion is
specified, it is particularly efficient since no in­
core copy need be done
conversion buffer size
skip n input records before starting copy
seek n records from beginning of output file
before copying

eount=n copy only n input records
eonv=aseii convert EBCDIC to ASCII

ebedie convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
uease map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
syne pad every input record to ibs
••• , • •• several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by
1024, 512, or 2 respectively; a pair of numbers may be separated
by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer,
converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case
ASCII characters are read into the conversion buffer, converted to
EBCDIC, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

- 1 -

DD(l) DD(l)

EXAMPLE
This command will read an EBCDIC floppy blocked ten 80-byte
EBCDIC card images per record into the ASCII file x :

dd if=/dev/rfp021 of=x ibs=800 cbs=80
conv= ascii,l case

Note the use of raw floppy. Dd is especially suited to I/O on the
raw physical devices because it allows reading and writing in arbi­
trary record sizes.

SEE ALSO
cp(I).

DIAGNOSTICS

BUGS

/+p records in{out) numbers of full and partial records
read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 char­
acter standard in the CACM Nov, 1968. The £bm conversion,
while less blessed as a standard, corresponds better to certain IBM
print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is
done only on conversion to EBCDIC. These should be separate
options.

- 2 -

DELTA (1) DELTA (1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-8] [-n] [-glist] [-m[mrlistlJ [-y[commentlJ
[-p] files

DESCRIPTION
Delta is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(l) (called the
g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is
named, delta behaves as though each file in the directory were
specified as a named file, except that non-Sees files (last com­
ponent of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard
input is read (see WARNINGS); each line of the standard input is
taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon
certain keyletters specified and flags (see admz'n(1)) that may be
present in the sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSJD Uniquely identifies which delta is to be
made to the sees file. The use of this
key letter is necessary only if two or more
outstanding gets for editing (get -e) on the
same sees file were done by the same per­
son (login name). The SID value specified
with the -r keyletter can be either the SID
specified on the get command line or the
SID to be made as reported by the get com­
mand (see get(l)). A diagnostic results if
the specified SID is ambiguous, or, if neces­
sary and omitted on the command line.

-s

-n

-glist

-m[mrlist]

Suppresses the issue, on the standard out­
put, of the created delta's SID, as well as
the number of lines inserted, deleted and
unchanged in the sees file.

Specifies retention of the edited g-file (nor­
mally removed at completion of delta pro­
cessing).

Specifies a list (see get(l) for the definition
of list) of deltas which are to be ignored
w hen the file is accessed at the change level
(SID) created by this delta.

If the sees file has the v flag set (see
admin(l)) then a Modification Request
(MR) number must be supplied as the rea­
son for creating the new delta.

- 1 -

DELTA (1) DELTA(l)

FILES

-y[comment]

-p

If -m is not used and the standard input is
a terminal, the prompt MRs? is issued on
the standard output before the standard
input is read; if the standard input is not a
terminal, no prompt is issued. The MRs?
prompt always precedes the comments?
prompt (see -y keyletter).

MRs in a list are separated by blanks
and/or tab characters. An unescaped new­
line character terminates the MR list.

Note that if the v flag has a value (see
admt"n(1)), it is taken to be the name of a
program (or shell procedure) which will
validate the correctness of the MR
numbers. If a non-zero exit status is
returned from MR number validation pro­
gram, delta terminates (it is assumed that
the MR numbers were not all valid).

Arbitrary text used to describe the reason
for making the delta. A null string is con­
sidered a valid comment.

If -y is not specified and the standard
input is a terminal, the prompt com­
ments? is issued on the standard output
before the standard input is read; if the
standard input is not a terminal, no prompt
is issued. An unescaped new-line character
terminates the comment text.

Causes delta to print (on the standard out­
put) the sees file differences before and
after the delta is applied in a d£ff(l) format.

All files of the form ?-file are explained in the Source Code Con­
trol System User's Guide. The naming convention for these files
is also described there.

g-file Existed before the execution of delta; removed
after completion of delta.

p-file Existed before the execution of delta; may exist
after completion of delta.

q-file Created during the execution of delta; removed
after completion of delta.

x-file Created during the execution of delta; renamed to
sees file after completion of delta.

z-file Created during the execution of delta; removed
during the execution of delta.

d-file Created during the execution of delta; removed
after completion of delta.

/usr/bin/bdiff Program to compute differences between the "got­
ten" file and the g-file.

- 2 -

DELTA(l) DELTA(l)

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot
be placed in the SCCS file unless the SOH is escaped. This charac­
ter has special meaning to sccs (see sccsjile(5)) and will cause an
error.

A get of many SCCS files, followed by a delta of those files, should
be avoided when the get generates a large amount of data.
Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line,
the -In (if necessary) and -y key letters must also be present.
Omission of these key letters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), bdiff(1), cdc(l), get(1), help(1), prs(1), rmdel(1),
sccsfile(4).
Source Code Control System User's Gu£de in the UNIX System
User's GuZ"de.

DIAGNOSTICS
Use help (1) for explanations.

- 3-

DEROFF(1) DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx 1 [-w 1 [files 1

DESCRIPTION
Deroff reads each of the files in sequence and removes all troff
requests, macro calls, backslash constructs, eqn(1) constructs
(between .EQ and .EN lines, and between delimiters), and tbl(1)
descriptions, perhaps replacing them with white space (blanks and
blank lines), and writes the remainder of the file on the standard
output. Deroff follows chains of included files (.so and .nx troff
commands); if a file has already been included, a .so naming that
file is ignored and a .nx naming that file terminates execution. If
no input fiie is given, deroff reads the standard input.

The -m option may be followed by an m, s, or l. The -mm
option causes the macros be interpreted so that only running text
is output (i.e., no text from macro lines.) The -ml option forces
the -mm option and also causes deletion of lists associated with
the mm macros.

If the -w option is given, the output is a word list, one "word"
per line, with all other characters deleted. Otherwise, the output
follows the original, with the deletions mentioned above. In text,
a "word" is any string that contat"ns at least two letters and is
composed of letters, digits, ampersands (&), and apostrophes (');
in a macro call, however, a "word" is a string that begt"ns with at
least two letters and contains a total of at least three letters. Del­
imiters are any characters other than letters, digits, apostrophes,
and ampersands. Trailing apostrophes and ampersands are
removed from "words."

SEE ALSO

BUGS

eqn(1), nroff(1), tbl(1).

Deroff is not a complete troff interpreter, so it can be confused by
subtle constructs. Most such errors result in too much rather than
too little output.
The -ml option does not handle nested lists correctly.

- 1 -

DIFF (1) DIFF (1)

NAME
diff - differential file and directory comparator

SYNOPSIS
cliff [-1 1 [-r 1 [-8 1 [-cefh 1 [-b 1 dirl dir2
cliff [-cefh] [-b 1 filel file2
cliff [-Dstring 1 [-b 1 filel file2

DESCRIPTION
If both arguments are directories, diff sorts the contents of the
directories by name, and then runs the regular file diff algorithm
(described below) on text files which are different. Binary files
which differ, common subdirectories, and files which appear in
only one directory are listed. Options when comparing directories
are:

-1 long output format; each text file d'ff is piped through
pr(l) to paginate it, other differences are remembered and
summarized after all text file differences are reported.

-r causes application of diff recursively to common subdirec­
tories encountered.

-8 causes diff to report files which are the same, which are
otherwise not mentioned.

-Sname
starts a directory diff in the middle beginning with file
name.

When run on regular files, and when comparing text files which
differ during directory comparison, daff tells what lines must be
changed in the files to bring them into agreement. Except in rare
circumstances, daff finds a smallest sufficient set of file differences.
If neither file1 nor file2 is a directory, then either may be given as
'-', in which case the standard input is used. If filel is a direc­
tory, then a file in that directory whose file-name is the same as
the file-name of file2 is used (and vice versa).

There are several options for output format; the default output
format contains lines of these forms:

nl a n9,n4
nl,n2 d n9
nl, n2 c n9, n4

These lines resemble ed commands to convert fUel into file2. The
numbers after the letters pertain to file 2 . In fact, by exchanging
'a' for cd' and reading backward one may ascertain equally how to
convert file2 into filel. As in ed, identical pairs where nl = n2 or
n9 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in
the first file flagged by '<', then all the lines that are affected in
the second file flagged by '>'.
Except for -b, which may be given with any of the others, the
following options are mutually exclusive:

- 1 -

DIFF (1) DIFF (1)

FILES

-e producing a script of a, c and d commands for the edi­
tor ed, which will recreate file2 from filel. In connec­
tion with -e, the following shell program may help
maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts
($2,$3,,,.) made by dziJ need be on hand. A 'latest ver­
sion' appears on the standard output.

(shift; cat $*; echo /l,$p/) I ed - $1

Extra commands are added to the output when compar­
ing directories with -e, so that the result is a sh (1)
script for converting text files which are common to the
two directories from their state in dir 1 to their state in
d£r2.

-f produces a script similar to that of -e, not useful with
ed, and in the opposite order.

-c produces a diff with lines of context. The default is to
present 3 lines of context and may be changed, e.g to
la, by -clO. With -c the output format is modified
slightly: the output beginning with identification of the
files involved and their creation dates and then each
change is separated by a line with a dozen *'s. The
lines removed from filel are marked with '-'; those
added to file2 are marked '+'. Lines which are changed
from one file to the other are marked in both files with
'!'.

-h does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but does
work on files of unlimited length.

-Dstring
causes d£ff to create a merged version of filel and file2
on the standard output, with C preprocessor controls
included so that a compilation of the result without
defining string is equivalent to compiling filel, while
defining string will yield file2.

-b causes trailing blanks (spaces and tabs) to be ignored,
and other strings of blanks to compare equal.

/tmp/d?????
/usr/lib/diffh for -h
/bin/pr

SEE ALSO
cmp(l), cc(1), comm(l), ed(l), diff3{l)

DIAGNOSTICS

BUGS

Exit status is a for no differences, 1 for some, 2 for trouble.

Editing scripts produced under the -e or -f option are naive
about creating lines consisting of a single'.'

- 2 -

DIFF (1) DIFF (1)

When comparing directories with the -b option specified, dzff first
compares the files ala cmp, and then decides to run the dzff algo­
rithm if they are not equal. This may cause a small amount of
spurious output if the files then turn out to be identical because
the only differences are insignificant blank string differences.

- 3-

DIFF3 (1) DIFF3 (1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-ex3 1 filel file2 file3

DESCRIPTION

FILES

D£ffS compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

==== all three files differ

====1 fUel is different

====2

====3

file2 is different

fileS is different

The type of change suffered in converting a given range of a given
file to some other is indicated in one of these ways:

I : nl a. Text is to be appended after line
number nl in file I, where I = I, 2, or
3.

I : nl , n2 c Text is to be changed in the range line
nl to line n2. If nl = n 2, the range
may be abbreviated to nl .

The original contents of the range follows immediately after a c
indication. When the contents of two files are identical, the con­
tents of the lower-numbered file is suppressed.

Under the -e option, d£ffS publishes a script for the editor ed
that will incorporate into filel all changes between file2 and fileS,
i.e., the changes that normally would be flagged ==== and
====3. Option -x (-3) produces a script to incorporate only
changes flagged ==== (====3). The following command
will apply the resulting script to filel .

(cat script; echo 'I,$p') I ed - filel

jtmpjd3*
jusr jlibjdiff3prog

SEE ALSO

BUGS

diff(1).

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes won't work.

- 1 -

DIFFMK(l) DIFFMK(1)

NAME
diffmk - mark differences between files

SYNOPSIS
d iffmk name 1 name2 name3

DESCRIPTION
Dzffmk compares two versions of a file and creates a third file that
includes "change mark" commands for nroff or troff. Namel and
name:3 are the old and new versions of the file. Dzffmk generates
nameS, which contains the lines of name:3 plus inserted formatter
"change mark" (.me) requests. When nameS is formatted,
changed or inserted text is shown by I at the right margin of each
line. The position of deleted text is shown by a single *.

If anyone is so inclined, dz"ffmk can be used to produce listings of
C (or other) programs with changes marked. A typical command
line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file maes contains:

.pl 1

.ll 77

.nf

.eo

.nc ,

The .Il request might specify a different line length, depending on
the nature of the program being printed. The .eo and .ne
requests are probably needed only for C programs.

If the characters I and * are inappropriate, a copy of dzffmk can
be edited to change them (d£ffmk is a shell procedure).

SEE ALSO

BUGS

diff(1), nroff(l).

Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may
produce undesirable output, i.e., replacing .sp by .sp 2 will pro­
duce a "change mark" on the preceding or following line of out­
put.

- 1 -

DIRCMP(l) DffiCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d 1 [-8 1 dirl dir2

DESCRIPTION
D£rcmp examines d£r 1 and d£r2 and generates various tabulated
information about the contents of the directories. Listings of files
that are unique to each directory are generated for all the options.
If no option is entered, a list is output indicating whether the
filenames common to both directories have the same contents.

-d Compare the contents of files with the same name in both
directories and output a list telling what must be changed
in the two files to bring them into agreement. The list
format is described in d£ff(1).

-8 Suppress messages about identical files.

SEE ALSO
cmp(l), diff(l).

- 1 -

DU(I) DU(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-ar8 1 [names 1

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recur­
sively) directories within each directory and file specified by the
names argument. The block count includes the indirect blocks of
the file. If names is missing, • is used.

The optional argument -8 causes only the grand total (for each of
the specified names) to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either
causes an entry to be generated for each directory only.

Du is normally silent about directories that cannot be read, files
that cannot be opened, etc. The -r option will cause du to gen­
erate messages in such instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments
are not listed.
If there are too many distinct linked files, du will count the excess
files more than once.
Files with holes in them will get an incorrect block count.

- 1 -

DUMP(l) DUMP(l)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [-a] [-f] [-0] [-h] [-8] [-r] [-1] [-t] [-z name] files

DESCRIPTION
The dump command dumps selected parts of each of its object file
arguments.

This command will accept both object files and archives of object
files. It processes each file argument according to one or more of
the following options:

-a

-f

-0

-h
-8

-r

-1

-t

Dump the archive header of each member of each
archive file argument.

Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

-z name Dump line number entries for the named function.

The following modt'fiers are used in conjunction with the options
listed above to modify their capabilities.

-d number Dump the section number or range of sections start­
ing at number and ending either at the last section
number or number specified by +d.

+d number Dump sections in the range either beginning with
first section or beginning with section specified by
-d.

-n name Dump information pertaining only to the named
entity. This mod(fier applies to -h, -8, -r, -I, and
-to

-t index Dump only the indexed symbol table entry. The-t
used in conjunction with +t, specifies a range of
symbol table entries.

+t index Dump the symbol table entries in the range ending
with the indexed entry. The range begins at the
first symbol table entry or at the entry specified by
the -t option.

-v Dump information in symbolic representation rather
than numeric (e.g., C_STATIC instead of OX02).
This modt'fier can be used with all the above options
except -8 and -0 options of dump.

- 1 -

DUMP (1) DUMP (1)

-z name,number

+z number

Dump line number entry or range of line numbers
starting at numb er for the named function.

Dump line numbers starting at either function name
or number specified by -z, up to number specified
by +z.

Blanks separating an optt"on and its mod£fier are optional. The
comma separating the name from the number modifying the -z
option may be replaced by a blank.

The dump command attempts to format the information it dumps
in a meaningful way, printing certain information in character,
hex, octal or decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

- 2 -

ECHO(l) ECHO (1)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by
a new-line on the standard output. It also understands C-like
escape conventions; beware of conflicts with the shell's use of \:

\ b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ \ backslash
\n the 8-bit character whose ASCII code is the 1-, 2-

or 3-digit octal number n, which must start with
a zero.

Echo is useful for producing diagnostics in command files and for
sending known data into a pipe.

SEE ALSO
sh(I).

- 1 -

ED (1) ED (1)

NAME
ed, red - text editor

SYNOPSIS
ed [- 1 [-x 1 [file 1

red [- 1 [-x 1 [file 1

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed
simulates an e command (see below) on the named file; that is to
say, the file is read into ed's buffer so that it can be edited. The
optional - suppresses the printing of character counts bye, r,
and w commands, of diagnostics from e and q commands, and of
the! prompt after a !shell command. If -x is present, an x com­
mand is simulated first to handle an encrypted file; this capability
is present only in the domestic (U.S) version of the UNIX PC
software. Ed operates on a copy of the file it is editing; changes
made to the copy have no effect on the file until a w (write) com­
mand is given. The copy of the text being edited resides in a tem­
porary file called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files
in the current directory. It prohibits executing shell commands
via !shell command. Attempts to bypass these restrictions result
in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After
including a format specification as the first line of file and invok­
ing ed with your terminal in stty -tabs or stty tab3 mode (see
sttY(I), the specified tab stops will automatically be used when
scanning file. For example, if the first line of a file contained:

< :t5,10,15 s72:>
tab stops would be set at columns 5, 10 and 15, and a maximum
line length of 72 would be imposed. NOTE: while inputting text,
tab characters when typed are expanded to every eighth column
as is the default.

Commands to ed have a simple and regular structure: zero, one,
or two addresses followed by a single-character command, possi­
bly followed by parameters to that command. These addresses
specify one or more lines in the buffer. Every command that
requires addresses has default addresses, so that the addresses can
very often be omitted.

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the
appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recog­
nized; all input is merely collected. Input mode is left by typing a
period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com­
mands (e.g., s) to specify portions of a line that are to be substi­
tuted. A regular expression (RE) specifies a set of character
strings. A member of this set of strings is said to be matched by

- 1 -

ED(1) ED (1)

the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed III 1.2
below) is a one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one­
character RE that matches the special character itself. The
special characters are:

a. " *, Land \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special,
except when they appear within square brackets ([];
see 1.4 below).

b. '" (caret or circumflex), which is special at the begin-
ning of an entire RE (see 3.1 and 3.2 below), or when it
immediately follows the left of a pair of square brackets
([]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an
entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE,
which is special for that RE (for example, see how slash
(/) is used in the g command, below.)

1.3 A period (.) is a one-character RE that matches any charac­
ter except new-line.

1.4 A non-empty string of characters enclosed in square brackets
([]) is a one-character RE that matches anyone character
in that string. If, however, the first character of the string
is a circumflex (A), the one-character RE matches any char­
acter except new-line and the remaining characters in the
string. The '" has this special meaning only if it occurs first
in the string. The minus (-) may be used to indicate a
range of consecutive ASCII characters; for example, [0-9] is
equivalent to [0123456789]. The - loses this special mean­
ing if it occurs first (after an initial A, if any) or last in the
string. The right square bracket (]) does not terminate such
a string when it is the first character within it (after an ini­
tial "', if any); e.g., []a-f] matches either a right square
bracket (]) or one of the letters a through f inclusive. The
four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one­
character REs:

2.1 A one-character RE is a RE that matches whatever the one­
character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that
matches zero or more occurrences of the one-character RE.
If there is any choice, the longest leftmost string that per­
mits a match is chosen.

- 2 -

ED (1) ED (1)

2.3 A one-character RE followed by \{m\}, \{m,\}, or
\ { m, n \} is a RE that matches a range of occurrences of
the one-character RE. The values of m and n must be non­
negative integers less than 256; \ { m \} matches exactly m
occurrences; \ { m, \} matches at least m occurrences;
\ { m, n \} matches any numb er of occurrences between m
and n inclusive. Whenever a choice exists, the RE matches
as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concate­
nation of the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is
a RE that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as
was matched by an expression enclosed between \ (and \)
earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(
counting from the left. For example, the expression
A\(.*\)\1$ matches a line consisting of two repeated

appearances of the same string.

Finally, an entire RE may be constrained to match only an initial
segment or final segment of a line (or both):

3.1 A circumflex (") at the beginning of an en tire RE constrains
that RE to match an in,"tz"al segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains
that RE to match a final segment of a line.

The construction A entire RE $ constrains the entire RE to match
the entire line.

The null RE (e.g., / /) is equivalent to the last RE encountered.
See also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at
any time there is a current line. Generally speaking, the current
line is the last line affected by a command; the exact effect on the
current line is discussed under the description of each command.
Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. I X addresses the line marked with the mark name character
x, which must be a lower-case letter. Lines are marked with
the k command described below.

5. A RE enclosed by slashes (/) addresses the first line found
by searching forward from the line following the current line
toward the end of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the
search wraps around to the beginning of the buffer and con­
tinues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before

- 3 -

ED(l) ED(I)

FILES below.

6. A RE enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the
current line toward the beginning of the buffer and stopping
at the first line containing a string matching the RE. If
necessary, the search wraps around to the end of the buffer
and continues up to and including the current line. See also
the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-)
followed by a decimal number specifies that address plus
(respectively minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with + or -, the addition or subtrac­
tion is taken with respect to the current line; e.g, -5 is
understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or sub­
tracted from the address, respectively. As a consequence of
this rule and of rule 8 immediately above, the address -
refers to the line preceding the current line. (To maintain
compatibility with earlier versions of the editor, the charac­
ter A in addresses is entirely equivalent to -.) Moreover,
trailing + and - characters have a cumulative effect, so -­
refers to the current line less 2.

to. For convenience, a comma (,) stands for the address pair
1,$, while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume
default addresses when an insufficient number of addresses is
given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma
(,). They may also be separated by a semicolon (;). In the latter
case, the current line (.) is set to the first address, and only then
is the second address calculated. This feature can be used to
determine the starting line for forward and backward searches (see
rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the
address; they show that the given addresses are the default.

I t is generally illegal for more than one command to appear on a
line. However, any command (except e, I, r, or w) may be
suffixed by I, n or p, in which case the current line is either listed,
numbered or printed, respectively, as discussed below under the l ,
nand p commands.

(.)a

- 4-

ED(1)

<text>

(.)c
<text>

(. , .)d

e file

E file

f file

ED (1)

The append command reads the given text and appends it
after the addressed line; • is left at the last inserted line,
or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the "appended)) text to
be placed at the beginning of the buffer. The maximum
number of characters that may be entered from a terminal
is 256 per line (including the newline character).

The change command deletes the addressed lines, then
accepts input text that replaces these lines; • is left at the
last line input, or, if there were none, at the first line that
was not deleted.

The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end
of the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer
to be deleted, and then the named file to be read in; • is
set to the last line of the buffer. If no file name is given,
the currently-remembered file name, if any, is used (see
the f command). The number of characters read is typed;
file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced
by!, the rest of the line is taken to be a shell (sh(l)) com­
mand whose output is to be read. Such a shell command
is not remembered as the current file name. See also
DIAGNOSTICS below.

The Edit command is like e, except that the editor does
not check to see if any changes have been made to the
buffer since the last w command.

If file is given, the file-name command changes the
currently-remembered file name to file; otherwise, it
prints the currently-remembered file name.

(1 , $)g/ RE / command list
In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with. initially set to that
line. A single command or the first of a list of commands
appears on the same line as the global command. All lines
of a multi-line list except the last line must be ended with
a \; a, i, and c commands and associated input are per­
mitted; the • terminating input mode may be omitted if it
would be the last line of the command list. An empty

- 5 -

ED (1) ED (1)

command It"st is equivalent to the p command. The g, G,
v, and V commands are not permitted in the command
It"st. See also BUGS and the last paragraph before FILES
below.

(l,$)G/RE/

h

H

(.)i

In the interactive Global command, the first step is to
mark every line that matches the given RE. Then, for
every such line, that line is printed, • is changed to that
line, and anyone command (other than one of the a, c,
i, g, G, v, and V commands) may be input and is exe­
cuted. After the execution of that command, the next
marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most
recent command executed within the current invocation of
G. Note that the commands input as part of the execu­
tion of the G command may address and affect any lines
in the buffer. The G commanq can be terminated by an
interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that
explains the reason for the most recent? diagnostic.

The Help command causes ed to enter a mode in which
error messages are printed for all subsequent? diagnostics.
It will also explain the previous? if there was one. The H
command alternately turns this mode on and off; it is ini­
tiallyoff.

<text>

The insert command inserts the given text before the
addressed line; • is left at the last inserted line, or, if there
were none, at the addressed line. This command differs
from the a command only in the placement of the input
text. Address 0 is not legal for this command. The max­
imum number of characters that may be entered from a
terminal is 256 per line (including the newline character).

(. , .+1)j

(•)kx

(. , •)1

The join command joins contiguous lines by removing the
appropriate new- line characters. If exactly one address is
given, this command does nothing.

The mark command marks the addressed line with name
x, which must be a lower-case letter. The address IX then
addresses this line; • is unchanged.

The list command prints the addressed lines in an unam­
biguous way: a few non-printing characters (e.g., tab)
backspace) are represented by (hopefully) mnemonic over­
stdkes, all other non-printing characters are printed in

- 6-

ED (1) ED (1)

octal, and long lines are folded. An I command may be
appended to any other command other than e, j, r, or w.

(.,.)ma

(. , .)n

(. , .)p

p

q

Q

The move command repositions the addressed line(s) after
the line addressed by a. Address 0 is legal for a and
causes the addressed line(s) to be moved to the beginning
of the file; it is an error if address a falls within the range
of moved lines; • is left at the last line moved.

The number command prints the addressed lines, preced­
ing each line by its line number and a tab character; . is
left at the last line printed. The n command may be
appended to any other command other than e, j, r, or w.

The print command prints the addressed lines; • is left at
the last line printed. The p command may be appended
to any other command other than e, j, r, or w; for exam­
ple, dp deletes the current line and prints the new current
line.

The editor will prompt with a * for all subsequent com­
mands. The P command alternately turns this mode on
and off; it is initially off.

The quit command causes ed to exit. No automatic write
of a file is done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been
made in the buffer since the last w command.

($)r file
The read command reads in the given file after the
addressed line. If no file name is given, the currently­
remembered file name, if any, is used (see e and j com­
mands). The currently-remembered file name is not
changed unless file is the very first file name mentioned
since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the
read is successful, the number of characters read is typed;
• is set to the last line read in. If file is replaced by!, the
rest of the line is taken to be a shell (sh (1)) command
whose output is to be read. For example, "$r !ls" appends
current directory to the end of the file being edited. Such
a shell command is not remembered as the current file
name.

(. , .)s/ RE / replacement / or
(. , .)s/ RE / replacement / g

The substitute command searches each addressed line for
an occurrence of the specified RE. In each line in which a
match is found, all (non-overlapped) matched strings are

- 7 -

ED(I) ED (1)

replaced by the replacement if the global replacement
indicator g appears after the command. If the global indi­
cator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitu­
tion to fail on all addressed lines. Any character other
than space or new-line may be used instead of / to delimit
the RE and the replacement; • is left at the last line on
which a substitution occurred. See also the last paragraph
before FILES below.

An ampersand (&) appearing in the replacement is
replaced by the string matching the RE on the current
line. The special meaning of & in this context may be
suppressed by preceding it by \. ..AJ:, a more general
feature, the characters \n, where n is a digit, are replaced
by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \). When
nested parenthesized sub expressions are present, n is
determined by counting occurrences of \(starting from
the left. When the character % is the only character in
the replacement, the replacement used in the most recent
substitute command is used as the replacement in the
current substitute command. The % loses its special
meaning when it is in a replacement string of more than
one character or is preceded by a \.

A line may be split by substituting a new-line character
into it. The new-line in the replacement must be escaped
by preceding it by \. Such substitution cannot be done
as part of a g or v command list.

(• , •)ta

u

This command acts just like the m command, except that
a copy of the addressed lines is placed after address a
(which may be 0); • is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely
the most recent a, c, d, g, t·, j, m, r, S, t, v, G, or V
command.

(1, $)v/RE/command iz"st
This command is the same as the global command g
except that the command l£st is executed with • initially
set to every line that does not match the RE.

(l,$)V/RE/
This command is the same as the interactive global com­
mand G except that the lines that are marked during the
first step are those that do not match the RE.

(1 , $)w file
The write command writes the addressed lines into the
named file. If the file does not exist, it is created with
mode 666 (readable and writable by everyone), unless your
umask setting (see sh(l)) dictates otherwise. The

- 8-

ED(l)

x

($)=

ED (1)

currently-remembered file name is not changed unless file
is the very first file name mentioned since ed was invoked.
If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands); . is
unchanged. If the command is successful, the number of
characters written is typed. If file is replaced by!, the
rest of the line is taken to be a shell (sh(1)) command
whose standard input is the addressed lines. Such a shell
command is not remembered as the current file name.

This command is available only in the domestic (U.S.)
version of the UNIX PC software. A key string is
demanded from the standard input. Subsequent e, r, and
w commands will encrypt and decrypt the text with this
key by the algorithm of crypt(1). An explicitly empty key
turns off encryption.

The line number of the addressed line is typed; • IS

unchanged by this command.

!shell command
The remainder of the line after the! is sent to the UNIX
shell (sh(1)) to be interpreted as a command. Within the
text of that command, the unescaped character % is
replaced with the remembered file name; if a ! appears as
the first character of the shell command, it is replaced
with the text of the previous shell command. Thus,!! will
repeat the last shell command. If any expansion is per­
formed, the expanded line is echoed; • is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+lp; it is use­
ful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ?
and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per file name, and 128K char­
acters in the buffer. The limit on the number of lines depends on
the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all
characters after the last new-line. Files (e.g., a..out) that contain
characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /)
would be the last character before a new-line, that delimiter may
be omitted, in which case the addressed line is printed. The fol­
lowing pairs of commands are equivalent:

s/s1/s2 s/sl/s2/p
g/s1 g/s1/p
?s1 ?s1?

- 9 -

ED(l) ED (1)

FILES
/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.

?f£le for an inaccessible file.
(use the help and Help commands for detailed explana­
tions).

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is
made to destroyed's buffer via the e or q commands: it prints?
and allows one to continue editing. A second e or q command at
this point will take effect. The - command-line option inhibits
this feature.

SEE ALSO
crypt(1), grep(l), sed(1), sh(1), stty(1), fspec(4), regexp(S).
A Tutorial Introduction to the UNIX Text Ed£tor by B. W. Ker­
nighan.
Advanced Ed£ting on UNIX by B. W. Kernighan.

CAVEATS AND BUGS
A ! command cannot be subject to a g or a v command.
The ! command and the ! escape from the e, r, and w commands
cannot be used if the the editor is invoked from a restricted shell
(see sh(I)).
The sequence \n in a RE does not match a new-line character.
The l command mishandles DEL.
Files encrypted directly with the crypt(1) command with the null
key cannot be edited.
Characters are masked to 7 bits on input.

- 10 -

ENABLE(l) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c 1 [-r[reason II printers

DESCRIPTION

FILES

Enable activates the named prt"nters, enabling them to print
requests taken by lp (1). Use lpstat(1) to find the status of
printers.

Dz"sable deactivates the named prz"nters, disabling them from
printing requests taken by lp(l). By default, any requests that are
currently printing on the designated printers will be reprinted in
their entirety either on the same printer or on another member of
the same class. Use lpstat(l) to find the status of printers.
Options useful with dz"sable are:

-c Cancel any requests that are currently printing on
any of the designated print~rs.

-r[reason 1 Associates a reason with the deactivation of the
printers. This reason applies to all printers men­
tioned up to the next -r option. If the -r option is
not present or the -r option is given without a rea­
son, then a default reason will be used. Reason is
reported by lpstat(1).

/usr /spool/lp/ *
SEE ALSO

Ip(1), lpstat(l).

- 1 -

ENV(1) ENV(1)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION
Env obtains the current env£ronment, modifies it according to its
arguments, then executes the command with the modified environ­
ment. Arguments of the form name=value are merged into the
inherited environment before the command is executed. The­
flag causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

- 1 -

EQN(1) EQN(1)

NAME
eqn, neqn, checkeq - format mathematical text for nroff or troff

SYNOPSIS
eqn [-dxy 1 [-pn 1 [-sn 1 [-fn 1 [files 1

neqn [-dxy 1 [-pn 1 [-sn 1 [-fn 1 [files 1

checkeq [files 1

DESCRIPTION
Eqn is a troff preprocessor for typesetting mathematical text on a
phototypesetter, while neqn is used for the same purpose with
nroff on typewriter-like terminals. Usage is almost always:

eqn files I troff
neqn files I nroff

or equivalent.

If no files are specified (or if - is specified as the last argument),
these programs read the standard input. A line beginning with
.EQ marks the start of an equation; the end of an equation is
marked by a line beginning with .EN. Neither of these lines is
altered, so they may be defined in macro packages to get center­
ing, numbering, etc. It is also possible to designate two characters
as delimt"ters; subsequent text between delimiters is then treated
as eqn input. Delimiters may be set to characters x and y with
the command-line argument -dxy or (more commonly) with
delim xy between .EQ and .EN. The left and right delimiters
may be the same character; the dollar sign is often used as such a
delimiter. Delimiters are turned off by delim off. All text that is
neither between delimiters nor between .EQ and .EN is passed
through untouched.

The program checkeq reports missing or unbalanced delimiters
and .EQ/.EN pairs.

Tokens within eqn are separated by spaces, tabs, new-lines,
braces, double quotes, tildes, and circumflexes. Braces {} are
used for grouping; generally speaking, anywhere a single character
such as x could appear, a complicated construction enclosed in
braces may be used instead. Tilde (~) represents a full space in
the output, circumflex (") half as much.

Subscripts and superscripts are produced with the keywords sub
and sup. Thus x sub j makes Xj, a sub k sup 2 produces ak 2,
while e z2+

y
2 is made with e sup {x sup 2 + y sup 2}. Frac-

. a
tions are made with over: a over b Yields b'; sqrt makes square

{ }
. 1

roots: lover sqrt ax sup 2+bx+c results in --;=::;;:====
J ax2+bx +c

The keywords from and to introduce lower and upper limits:
n

lim Ex;
n -HX> 0

is made with lim from {n - > inf} sum from 0 to n x sub £.
Left and right brackets, braces, etc., of the right height are made
with left and right:

- 1 -

EQN(1) EQN(l)

left [X sup 2 + Y sup 2 over alpha right J ~ =~ 1 produces

[x 2+ ~] ~ 1. Legal characters .fter left and right .re

braces, brackets, bars, c and f for ceiling and floor, and "" for
nothing at all (useful for a right-side-only bracket). A left tht"ng
need not have a matching right tht"ng.

Vertical piles of things are made with pile, lpile, cpile, and rpile:
a

pt"le {a above b above c} produces b. Piles may have arbitrary
c

numbers of elements; lpile left-justifies, pile and cpile center (but
with different vertical spacing), and rpile right justifies. Matrices
are made with matrix:
matrix { lcol { x sub i above y sub 2 } ccol { 1 ab ove 13} }

xi 1
produces 2. In addition, there is rcol for a right-justified

Y2
column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar,
vec, dyad, and under: x dot = f(t} bar is x = f (t),
y dotdot bar ~ =~ n under is y = 11., and x vec ~ =~ y dyad
isx =y.
Point sizes and fonts can be changed with size n or size ±n,
roman, italic, bold, and font n. Point sizes and fonts can be
changed globally in a document by gsize nand gfont n, or by
the command-line arguments -sn and -fn.

Normally, subscripts and superscripts are reduced by 3 points
from the previous size; this may be changed by the command-line
argument -pn.

Successive display arguments can be lined up. Place mark before
the desired lineup point in the first equation; place lineup at the
place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with
define:

define thing % replacement %

defines a new token called thing that will be replaced by replace­
ment whenever it appears thereafter. The % may be any charac­
ter that does not occur in replacement.

Keywords such as sum (~], int (I), inf (00), and shorthands
such as >= (~), != (fl, and - > (-+) are recognized. Greek
letters are s{>elled out in the desired case, as in alpha (Q'), or
GAMMA (r). Mathematical words such as sin, cos, and log are
made Roman automatically. Troff(1) four-character escapes such
as \(dd (t) and \(bs (0) may be used anywhere. Strings
enclosed in double quotes (" ... ") are passed through untouched;
this permits keywords to be entered as text, and can be used to
communicate with troff when all else fails. Full details are given
in the manual cited below.

- 2 -

EQN(l) EQN(1)

SEE ALSO

BUGS

Typesetting Mathematic8- User's Guide by B. W. Kernighan and
L. L. Cherry.
cW(l), mm(l), mmt(1), nroff(1), tbl(1), eqnchar(5), mm(5).

To embolden digits, parentheses, etc., it is necessary to quote
them, as in bold "12.3".

- 3-

EX(l) EX(!)

NAME
ex, edit - text editor

SYNOPSIS
ex [- 1 [-v 1 [-t tag 1 [-r 1 [+command 1 [-1 1 name

edit [ex options 1
DESCRIPTION

Ex is the root of a family of editors: ed,'t, ex and vi. Ex is a super­
set of ed, with the most notable extension being a display editing
facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that
the editor edit is convenient for you. It avoids some of the com­
plexities of ex used mostly by systems programmers and persons
very familiar with ed.

If you have a CRT terminal, you may wish to use a display based
editor; in this case see vi(1), which is a command which focuses on
the display editing portion of ex. Note that the ability to edit
encrypted files is present only in the domestic (U.S.) version of the
UNIX PC software.

DOCUMENTATION

FILES

The document Edit: A tutorial provides a comprehensive introduc­
tion to edit assuming no previous knowledge of computers or the
UNIX system.

The Ex Reference Manual - Version 8.5 is a comprehensive and
complete manual for the command mode features of ex, but you
cannot learn to use the editor by reading it. For an introduction
to more advanced forms of editing. using the command mode of ex
see the editing documents written by Brian Kernighan for the edi­
tor ed; the material in the introductory and advanced documents
works also with ex.

An Introduction to Display Editing with Vi introduces the display
editor vi and provides reference material on vi. All of these docu­
ments can be found in volume 2c of the Programmer's Manual. In
addition, the Vi Quick Reference card summarizes the commands
of vi in a useful, functional way, and is useful with the Introduc­
tion.

/usr/lib/ex??strings error messages
/usr /lib / ex? ?recover recover command
/usr/lib/ex??preserve preserve command
/ etc / termcap describes capabilities of terminals
-/.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr /preserve preservation directory

SEE ALSO
awk(l), ed(l), grep(l), sed(l), vi(l), termcap(S), environ(S)

- 1 -

EX(l)

BUGS

EX(l)

The undo command causes all marks to be lost on lines changed
and then restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical
lines. More than a screen full of output may result if long lines
are present.

File input/output errors don't print a name if the command line
'-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and
not used before exiting the editor.

Null characters are discarded in input files, and cannot appear in
resultant files.

- 2 -

EXPR(l) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Terms of the expression
must be separated by blanks. Characters special to the shell must
be escaped. Note that 0 is returned to indicate a zero value,
rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments
may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2's complement numbers.

The operators and keywords are listed below. Characters that
need to be escaped are preceded by \. The list is in order of
increasing precedence, with equal precedence operators grouped
within { } symbols.

expr \ I expr
returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, other­
wise returns O.

expr {=, \>, \>=, \<, \<=, !=} expr
returns the result of an integer comparison if both argu­
ments are integers, otherwise returns the result of a lexi­
cal comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, /, % } expr
multiplication, division, or remainder of the integer­
valued arguments.

expr : expr

EXAMPLES
1.

2.

The matching operator : compares the first argument
with the second argument which must be a regular
expression; regular expression syntax is the same as that
of ed(I), except that all patterns are "anchored" (i.e.,
begin with "') and, therefore, ,., is not a special character,
in that context. Normally, the matching operator
returns the number of characters matched (0 on failure).
Alternatively, the \(••• \) pattern symbols can be used
to return a portion of the first argument.

a='expr $a + l'

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : '.* /\(.* \), \ I $a

- 1 -

EXPR(1) EXPR (1)

returns the last segment of a path name (i.e., file).
Watch out for / alone as an argument: expr will
take it as the division operator (see BUGS below).

3. # A better representation of example 2.
expr / /$a : '.*/\(.*\)'

The addition of the / / characters eliminates any
ambiguity about the division operator and
simplifies the whole expression.

4. expr $VAR : '.*'
returns the number of characters iIi $V AR.

SEE ALSO
ed(1), sh(1).

EXIT CODE
As a side effect of expression evaluation, expr returns the follow-
ing exit values:

o
1
2

if the expression is neither null nor 0
if the expression is null or 0
for invalid expressions.

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a
string

After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an =, the command:

expr $a = ,=,

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as
the = operator). The following works:

expr X$a = X=

- 2 -

FACTOR(I) FACTOR (I)

NAME
factor - factor a number

SYNOPSIS
factor [number 1

DESCRIPTION
When factor is invoked without an argument, it waits for a
number to be typed in. If you type in a positive number less than
256 (about 7.2X 1016

) it will factor the number and print its prime
factors; each one is printed the proper number of times. Then it
waits for another number. It exits if it encounters a zero or any
non-numeric character.

If factor is invoked with an argument, it factors the number as
above and then exits.

Maximum time to factor is proportional to Vn and occurs when n
is prime or the square of a prime. It takes 1 minute to factor a
prime near 1014 on a PDP-l1.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

- 1 -

FC(1) (AT&T UNIX PC only)

NAME
fc - copy floppy diskettes

SYNOPSIS
fc

DESCRIPTION

FC (1)

Fe makes duplicate copies of floppy diskettes, prompting for
source diskette and target diskette.

- 1 -

FILE (1) FILE (1)

NAME
file - determine file type

SYNOPSIS
file [-c 1 [-f ffile 1 [-m mfile 1 arg ...

DESCRIPTION
FZ"le performs a series of tests on each argument in an attempt to
classify it. If an argument appears to be ASCII, file examines the
first 512 bytes and tries to guess its language. If an argument is
an executable a.out, file will print the version stamp, provided it
is greater than 0 (see ld(1)).
If the -f option is given, the next argument is taken to be a file
containing the names of the files to be examined.

Ft"le uses the file I etc/ magic to identify files that have some sort
of magz"c number, that is, any file containing a numeric or string
constant that indicates its type. Commentary at the beginning of
/ etc/magz"c explains its format.

The -m option instructs file to use an alternate magic file.

The -c flag causes file to check the magic file for format errors.
This validation is not normally . carried out for reasons of
efficiency. No file typing is done under -c.

- 1 -

FIND (1) FIND (1)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Ft'nd recursively descends the directory hierarchy for each path
name in the path-name-list (i.e., one or more path names) seeking
files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a
decimal integer where +n means more than n, -n means less
than nand n means exactly n.

-name file True if file matches the current file name. Nor­
mal shell argument syntax may be used if
escaped (watch out for [, ? and *).

-perm onum True if the file permission flags exactly match
the octal number onum (see chmod(l)). If
onum is prefixed by a minus sign, more flag bits
(017777, see stat(2)) become significant and the
flags are compared:

(flags&onum)==onum

-type c True if the type of the file is c, where c is h, c,
d, p, or f for block special file, character special
file, directory, fifo (a.k.a named pipe), or plain
file.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If
uname is numeric and does not appear as a
login name in the /etc/passwd file, it is taken
as a user ID.

-group gname True if the file belongs to the group gname. If
gname is numeric and does not appear in the
/etc/group file, it is taken as a group ID.

-size n True if the file is n blocks long (512 bytes per
block).

-atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value

-ok cmd

as exit status. The end of cmd must be punc­
tuated by an escaped semicolon. A command
argument {} is replaced by the current path
name.

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

- 1 -

FIND (1) FIND (1)

-print

-cpio device

-newer j£le

-inumn

-depth

Always true; causes the current path name to be
printed.

Write the current file on dev£ce in cp£o (4) for­
mat (5120 byte records).

True if the current file has been modified more
recently than the argument file.

True if the current file is inode number n.

Always true; Must begin the expression. Forces
a depth first search: find does not apply the
expression to a directory until it has applied the
expression to all the files in the directory. This
is useful with cp£o; see the example in cpz"o(l).
If the example were done without -depth, the
modification dates on the copied directories
would not match their originals.

(express£on) True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped). /

The primaries may be combined using the following operators (in
order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by
the juxtaposition of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

To remove all files named a.out or *.0 that have not been
accessed for a week:

find / \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm {}
\;

/etc/passwd, /etc/group

SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(4), fs(4).

- 2 -

GET (1) GET (1)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e]
[-I[pJ] [-p] [-m] [-n] [-8] [-b] [-g] [-t] file

DESCRIPTION
Get generates an ASCII text file from each named sees file
according to the specifications given by its keyletter arguments,
which begin with -. The arguments may be specified in any
order, but all keyletter arguments apply to all named sees files.
H a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed. Again, non-sees
files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name is derived from the sees file name by simply remov­
ing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only
one sees file is to be processed, but the effects of any keyletter
argument applies independently to each named file.

-rSID The sees IDentification string (SID) of the version
(delta) of an sees file to be retrieved. Table 1 below
shows, for the most useful cases, what version of an
sees file is retrieved (as well as the SID of the version
to be eventually created by delta(1) if the -e key letter
is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were
created after the specified cutoff date-time are included
in the generated ASCII text file. Units omitted from
the date-time default to their maximum possible
values; that is, -c7502 is equivalent to
-c75022823S0S0. Any number of non-numeric char­
acters may separate the various 2 digit pieces of the
cutoff date-time. This feature allows one to specify a
cutoff date in the form: "-c77/2/2 0:22:25". Note
that this implies that one may use the %E% and
%U% identification keywords (see below) for nested
gets within the input to a command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or
making a change (delta) to the sees file via a subse­
quent use of delta(l). The -e keyletter used in a get
for a particular version (SID) of the sees file prevents

- 1 -

GET (1)

-b

-ilist

-xlt"st

-k

-lip]

-p

-8

-m

GET (1)

further gets for editing on the same SID until delta is
executed or the j (joint edit) flag is set in the sees file
(see admt"n(l)). Concurrent use of get -e for different
SIDs is always allowed.

If the g-file generated by get with an -e keyletter is
accidentally ruined in the process of editing it, it may
be regenerated by re-executing the get command with
the -k keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file (see
admin(1)) are enforced when the -e keyletter is used.

Used with the -e key letter to indicate that the new
delta should have an SID in a new branch as shown in
Table 1. This key letter is ignored if the b flag is not
present in the file (see admt'n(l)) or if the retrieved
delta is not a leaf delta. (A leaf delta is one that has
no successors on the sees file tree.)
Note: A branch delta may always be created from a
non-leaf delta.

A list of deltas to be included (forced to be applied) in
the creation of the generated file. The Ust has the fol­
lowing syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any
form shown in the ((SID Specified" column of Table 1.
Partial SIDs are interpreted as shown in the ((SID
Retrieved" column of Table 1.

A list of deltas to be excluded (forced not to be
applied) in the creation of the generated file. See the
-i keyletter for the list format.

Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The - k
keyletter is implied by the -e keyletter.

Causes a delta summary to be written into an l-file. If
-lp is used then an l-file is not created; the delta sum­
mary is written on the standard output instead. See
FILES for the format of the l-file.

Causes the text retrieved from the sees file to be writ­
ten on the standard output. No g-file is created. All
output which normally goes to the standard output
goes to file descriptor 2 instead, unless the -8 key letter
is used, in which case it disappears.

Suppresses all output normally written on the standard
output. However, fatal error messages (which always
go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the sees file to be
preceded by the SID of the delta that inserted the text

- 2 -

GET (1) GET (1)

line in the sees file. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with
the %M% identification keyword value (see below).
The format is: %M% value, followed by a horizontal
tab, followed by the text line. When both the -m and
-n keyletters are used, the format is: %M% value, fol­
lowed by a horizontal tab, followed by the -m
key letter generated format.

-g Suppresses the actual retrieval of text from the sees
file. It is primarily used to generate an l-file, or to
verify the existence of a particular SID.

-t Used to access the most recently created ("top") delta
in a given release (e.g., -rl), or release and level (e.g.,
-r1.2).

-3seq-no. The delta sequence number of the sees file delta (ver-
sion) to be retrieved (see sccsfile(S)). This keyletter is
used by the comb(l) command; it is not a generally
useful keyletter, and users should not use it. If both
the -r and -3 keyletters are specified, the -3

keyletter is used. Care should be taken when using
the -3 key letter in conjunction with the -e keyletter,
as the SID of the delta to be created may not be what
one expects. The -r keyletter can be used with the
-3 and -e key letters to control the naming of the SID
of the delta to be created.

For each file processed, get responds (on the standard output)
with the SID being accessed and with the number of lines retrieved
from the sees file.

If the -e keyletter is used, the SID of the delta to be made
appears after the SID accessed and before the number of lines gen­
erated. If there is more than one named file or if a directory or
standard input is named, each file name is printed (preceded by a
new-line) before it is processed. If the -i keyletter is used
included deltas are listed following the notation "Included"; if the
-x keyletter is used, excluded deltas are listed following the nota­
tion "Excluded".

- 3-

GET (1) GET(!)

TABLE 1. Determination of sees Identification String

SID*
Specified

-b Keyletter Other SID SID of Delta

none!
none!
R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B
R.L.B.S
R.L.B.S
R.L.B.S

*

**

t

Usedt Conditions Retrieved to be Created
no R defaults to mR mR.mL mR.(mL+l)
yes R defaults to mR mR.mL mR.mL.(mB + 1).1
no R> mR mR.mL R.l***
no R=mR mR.mL mR.(mL+l)
yes R> mR mR.mL mR.mL.(mB+I).1
yes R=mR mR.mL mR.mL.(mB+l).l

R < mR and hR.mL** hRmL.(mB + 1).1 R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB +1).1
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB+l).1

Trunk succ. R.L R.L.(mB+l).1 in release > R
no No branch succ. RL.B.mS R.L.B.(mS +1)
yes No branch succ. R.L.B.mS R.L.(mB+l).1
no No branch succ. RL.B.S RL.B.(S + 1)
yes No branch succ. R.L.B.S R.L.(mB+l).l

Branch succ. R.L.B.S R.L.(mB+l).1

«R", «Lll, «B", and «8" are the «release", «level",
«branch", and «sequence" components of the SID, respec­
tively; «m" means «maximum". Thus, for example, «R.mLll
means «the maximum level number within release R";
«R.L.(mB+l).I" means «the first sequence number on the
new branch (i.e., maximum branch number plus one) of level
L within release Rll. Note that if the SID specified is of the
form «R.Lll, «R.L.B", or «R.L.B.Sll, each of the specified
components must exist.
«hR" is the highest existz·ng release that is lower than the
specified, nonext"stent, release R.
This is used to force creation of the first delta in a new
release.
Successor.
The -b keyletter is effective only if the b flag (see
admin (1)) is present in the file. An entry of - means
«irrelevant".
This case applies if the d (default SID) flag is not present in
the file. If the d flag is present in the file, then the SID
obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other cases
in this table applies.

- 4 -

GET (1) GET (1)

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the
sees file by replacing identification keywords with their value
wherever they occur. The following keywords may be used in the
text stored in an sees file:

Keyword
%M%

%1%

%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%

%F%
%P%
%Q%
%0%

%Z%
%W%

%A%

Value
Module name: either the value of the m flag in the file
(see admin(l)), or if absent, the name of the sees file
with the leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of
the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY /MM/DD).
Current date (MM/DD /YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY /MM/DD).
Date newest applied delta was created (MM/DD/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see
admin(1)).
sees file name.
Fully qualified sees file name.
The value of the q flag in the file (see admz'n(l)).
Current line number. This keyword is intended for
identifying messages output by the program such as
"this shouldn't have happened ll type errors. It is not
intended to be used on every line to provide sequence
numbers.
The 4-character string @(#) recognizable by what(l).
A shorthand notation for constructing what(l) strings
for UNIX program files.
%W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(1)
strings for non-UNIX program files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get, These files are
known generically as the g-file, l-file, p-file, and z-file. The letter
before the hyphen is called the tag. An auxiliary file name is
formed from the sees file name: the last component of all sees
file names must be of the form s.module-name, the auxiliary files
are named by replacing the leading s with the tag. The g-file is
an exception to this scheme: the g-file is named by removing the
s. prefix. For example, s.xyz.c, the auxiliary file names would be
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the
current directory (unless the -p keyletter is used). A g-file is
created in all cases, whether or not any lines of text were

- 5 -

GET (1) GET (1)

generated by the get. It is owned by the real user. If the -k
keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current
directory.

The I-file contains a table showing which deltas were applied in
generating the retrieved text. The I-file is created in the current
directory if the -I keyletter is used; its mode is 444 and it is
owned by the real user. Only the real user need have write per­
mission in the current directory.

Lines in the i-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or
wasn't applied and ignored;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the
delta was or was not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form

YY /MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines,
indented one horizontal tab character. A blank line ter­
minates each entry.

The p-file is used to pass information resulting from a get with an
-e keyletter along to delta. Its contents are also used to prevent
a subsequent execution of get with an -e keyletter for the same
SID until delta is executed or the joint edit flag, j, (see admt"n(1))
is set in the sees file. The p-file is created in the directory con­
taining the sees file and the effective user must have write per­
mission in that directory. Its mode is 644 and it is owned by the
effective user. The format of the p-file is: the gotten SID, followed
by a blank, followed by the SID that the new delta will have when
it is made, followed by a blank, followed by the login name of the
real user, followed by a blank, followed by the date-time the get
was executed, followed by a blank and the -i keyletter argument
if it was present, followed by a blank and the -x keyletter argu­
ment if it was present, followed by a new-line. There can be an
arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the
command (i.e., get) that created it. The z-file is created in the
directory containing the sees file for the duration of get. The

- 6-

GET (1) GET (1)

same protection restrictions as those for the p-file apply for the
z-file. The z-file is created mode 444.

SEE ALSO
admin(1), delta(l), help(1), prs(l), what(l), sccsfile(4).
Source Code Control System in the UNIX System Support Tools
Gu£de.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

If the effective user has write permission (either explicitly or impli­
citly) in the directory containing the sees files, but the real user
doesn't, then only one file may be named when the -e keyletter is
used.

- 7 -

GETOPT(l) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set -- 'getopt optstring $*'

DESCRIPTION
Getopt is used to break up options in command lines for easy
parsing by shell procedures and to check for legal options. Opt­
strt'ng is a string of recognized option letters (see getopt(3C)); if a
letter is followed by a colon I the option is expected to have an
argument which mayor may not be separated from it by white
space. The special option -- is used to delimit the end of the
options. If it is used explicitly, getopt will recognize it; otherwise,
getopt will generate it; in either case, getopt will place it at the
end of the options. The shell's positional parameters ($1 $2 ...)
are reset so that each option is preceded by a - and is in its own
positional parameter; each option argument is also parsed into its
own positional parameter.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the options a or h, as
well as the option 0 , which requires an argument:

set - - 'getopt abo: $*'
if [$? != 0 1
then

fi

echo $USAGE
exit 2

for in $*
do

done

case $i in
-a I -b)
-0)
--)
esac

FLAG=$i· shift··
OARG=$2· shift 2·· I /I

shift; break;;

This code will accept any of the following as equivalent:

cmd - aoarg file file
cmd - a - 0 arg file file
cmd - oarg - a file file
cmd -a -oarg -- file file

SEE ALSO
sh(1), getopt(3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it
encounters an option letter not included in optstring.

- 1 -

GREEK (1) GREEK (1)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal 1

DESCRIPTION

FILES

Gre e k is a filter that reinterprets the extended character set, as
well as the reverse and half-line motions, of a 128-character TELE­
TYPE Model 37 terminal (which is the nroff default terminal) for
certain other terminals. Special characters are simulated by over­
striking, if necessary and possible. If the argument is omitted,
greek attempts to use the environment variable $TERM (see
envz"ron(5)). The following termz"nals are recognized currently:

300 DASI300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

/usr /bin/300
/usr /bin/300s
/usr /bin/ 4014
/usr /bin/ 450
/usr /bin/hp

SEE ALSO
300(1), 4014(1), 450(1), eqn(1), mm(1), nroff(1), environ(5),
greek(5), term(5).

- 1 -

GREP (1) GREP (1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options 1 expression [files 1
egrep [options 1 [expression 1 [files 1
fgrep [options 1 [strings 1 [files 1

D~SCRIPTION

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each line
found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ed(1); grep uses a compact
non-deterministic algorithm. Egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes
needs exponential space. Fgrep patterns are fixed strings; it is
fast and compact. The following optz'ons are recognized:

-v All lines but those matching are printed.
-c Only a count of matching lines is printed.
-i Ignore upper/lower case distinction during compare.
-x (Exact) only lines matched in their entirety are printed

(fgrep only).
-I Only the names of files with matching lines are listed

(once), separated qy new-lines.
-D Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was

found. This is sometimes useful in locating disk block
numbers by context.

-8 The error messages produced for nonexistent or unreadable
files are suppressed (grep only).

-eexpression
Same as a simple expression argument, but useful when the
expressz'on begins with a - (does not work with grep).

-fJile The regular expression (egrep) or strings list (fgrep) is
taken from the file.

In all cases, the file name is output if there is more than one input
file. Care should be taken when using the characters $, *, L A, I,
(,), and \ in expression, because they are also meaningful to the
shell. It is safest to enclose the entire expression argument in sin­
gle q~otes ' ... '.

Fgrep searches for lines that contain one of the strings separated
by new-lines.

Egrep accepts regular expressions as in ed(l), except for \(and \),
with the addition of:
1. A regular expression followed by + matches one or more

occurrences of the regular expression. .
2. A regular expression followed by ? matches 0 or 1

occurrences of the regular expression.
3. Two regular expressions separated by I or by a new-line

match strings that are matched by either.
4. A reg~lar expression may be enclosed in parentheses 0 for

groupmg

- 1 -

GREP(l) GREP(l)

The order of precedence of operators is [], then * ? +, then con­
catenation, then I and new-line.

SEE ALSO
ed(1), sed(l), sh(1).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files (even if matches were found).

Ideally there should be only one grep, but we don't know a single
algorithm that spans a wide enough range of space-time tradeoff's.
Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a-z], in character
classes.

When using the -b option, grep reports the block number of the
match in 512-byte blocks; egrep and fgrep report the block
number in 1024-byte blocks.

- 2 -

HEAD (1)

NAME
head - give first few lines

SYNOPSIS
head [- count] [file ...]

DESCRIPTION

HEAD (1)

Head gives the first count lines of each of the specified files. If no
files are specified, head reads the standard input. If you omit
count, head prints the first 10 lines.

SEE ALSO
tail(1).

- 1 -

HELP(l) HELP (1)

NAME
help - ask for help

SYNOPSIS
help [argsj

DESCRIPTION

FILES

Help finds information to explain a message from a command or
explain the use of a command. Zero or more arguments may be
supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally
appear in parentheses following messages) or command names, of
one of the following types:

type 1 Begins with non-numerics, ends in numer­
ics. The non-numeric prefix is usually an
abbreviation for the program or set of rou­
tines which produced the message (e.g.,
ge6, for message 6 from the get command).

type 2

type 3

Does not contain numerics (as a command,
such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try "help stuck".

/usr /lib/help directory containing files of message text.

/usr /lib/help/helploc file containing locations of help files not in
/ usr /lib/help.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

HP(l) HP (1)

NAME
hp - handle special functions of lIP 2640 and 2621-series terminals

SYNOPSIS
hp [-e 1 [-m 1

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series
of terminals, with the primary purpose of producing accurate
representations of most nroff output. A typical use is:

nroff -h files ... I hp

Regardless of the hardware options on your terminal, hp tries to
do sensible things with underlining and reverse line-feeds. If the
terminal has the "display enhancements" feature, sUbscripts and
superscripts can be indicated in distinct ways. If it has the
"mathematical-symbol" feature, Greek and other special charac­
ters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display

enhancements" feature, and so maximal use is made of
the added display modes. Overstruck characters are
presented in the Underline mode. Superscripts are shown
in Half-bright mode, and subscripts in Half-bright, Under­
lined mode. If this flag is omitted, hp assumes that your
terminal lacks the "display enhancements" feature. In
this case, all overstruck characters, subscripts, and super­
scripts are displayed in Inverse Video mode, i.e., dark-on­
light, rather than the usual light-on-dark.

-m Requests minimization of output by removal of new-lines.
Any contiguous sequence of 3 or more new-lines is con­
verted into a sequence of only 2 new-lines; i.e., any
number of successive blank lines produces only a single
blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides
the same set as does 900(1), except that "not" is approximated by
a right arrow, and only the top half of the integral sign is shown.
The display is adequate for examining output from neqn.

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1,024 charac­
ters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO

BUGS

300(1), col(1), eqn(1), greek(1), nroff(1), tbl(1).

An "overstriking sequence" is defined as a printing character fol­
lowed by a backspace followed by another printing character. In
such sequences, if either printing character is an underscore, the
other printing character is shown underlined or in Inverse Video;
otherwise, only the first printing character is shown (again, under­
lined or in Inverse Video). Nothing special is done if a backspace

- 1 -

HP(l) HP (1)

is adj acent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text
"disappear"; in particular, tables generated by tbl(l) that contain
vertical lines will often be missing the lines of text that contain
the "foot" of a vertical line, unless the input to hp is piped
through col(1).
Although some terminals do provide numerical superscript charac­
ters, no attempt is made to display them.

- 2 -

HYPHEN(l) HYPHEN(l)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files 1

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and
prints them on the standard output. If no arguments are given,
the standard input is used; thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff's hyphenation
in textfile.

mm textfile I hyphen

SEE ALSO
mm(1).

BUGS
Hyphen can't cope with hyphenated £talZ"c (i.e., underlined) words;
it will often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other
than spurious extra output.

- 1 -

ID (1)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

ID (1)

Id writes a message on the standard output giving the user and
group IDs and the corresponding names of the invoking process. If
the effective and real IDs do not match, both are printed.

SEE ALSO
logname(1), getuid(2).

- 1 -

IPCRM(1) IPCRM(1)

NAME
Ipcrm - remove a message queue, semaphore set or shared
memory id

SYNOPSIS
ipcrm [optz'ons I

DESCRIPTION
[pcrm will remove one or more specified message, semaphore or
shared memory identifiers. The identifiers are specified by the fol­
lowing options:

-q msqid removes the message queue identifier msqz'd from the
system and destroys the message queue and data
structure associated with it.

-m shmid removes the shared memory identifier shmZ"d from
the system. The shared memory segment and data
structure associated with it are destroyed after the
last detach.

-8 semid removes the semaphore identifier semid from the sys­
tem and destroys the set of semaphores and data
structure associated with it.

-Q msgkey removes the message queue identifier, created with
key msgkey, from the system and destroys the mes­
sage queue and data structure associated with it.

-M shmkey removes the shared memory identifier, created with
key shmkey, from the system. The shared memory
segment and data structure associated with it are
destroyed after the last detach.

-8 semkey removes the semaphore identifier, created with key
semkey, from the system and destroys the set of
semaphores and data structure associated with it.

The details of the removes are described in msgct~2), shmctl(2),
and semct(2). The identifiers and keys may be found by using
z"pcs(1).

SEE ALSO
ipcs(l), msgct1(2), msgget(2), msgop(2), semctl(2), semget(2),
semop(2), shmctl(2), shmget(2), shmop(2).

- 1 -

IPCS(l) IPes (1)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options 1

DESCRIPTION
[pcs prints certain information about active inter-process com­
munication facilities. Without options, information is printed in
short format for message queues, shared memory, and semaphores
that are currently active in the system. Otherwise, the informa­
tion that is displayed is controlled by the following options:

-q

-m

-s

Print information about active message queues.

Print information about active shared memory seg­
ments.

Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information
about only those indicated will be printed. If none of these three
are specified, information about all three will be printed.

- h Print biggest allowable size information. (Max­
imum number of bytes in messages on queue for
message queues, size of segments for shared
memory, and number of semaphores in each set for
semaphores.) See below for meaning of columns in
a listing.

-c Print creator's login name and group name. See
below.

-0 Print information on outstanding usage. (Number
of messages on queue and total number of bytes in
messages on queue for message queues and number
of processes attached to shared memory seg­
ments.)

-p Print process number information. (Process ID of
last process to send a message and process ID of
last process to receive a message on message
queues and process ID of creating process and pro­
cess ID of last process to attach or detach on
shared memory segments) See below.

-t Print time information. (Time of the last control
operation that changed the access permissions for
all facilities. Time of last msgsnd and last msgrcv
on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphores.)
See below.

-& Use all print options. (This is a shorthand nota­
tion for -h, -c, -0, -p, and -t.)

-0 corefile Use the file corefile in place of / dey /kmem.

-N namelz'st The argument will be taken as the name of an
alternate namelist U unix is the default).

- 1 -

IPCS (1) IPCS (I)

The column headings and the meaning of the columns in an £pcs
listing are given below; the letters in parentheses indicate the
options that cause the corresponding heading to appear; all means
that the heading always appears. Note that these opt£ons only
determine what information is provided for each facility; they do
not determine which facilities will be listed.

T

ID
KEY

MODE

(all)

(all)
(all)

(all)

Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

The identifier for the facility entry.
The key used as an argument to msgget,
semget, or shmget to create the facility entry.
(Note: The key of a shared memory segment
is changed to IPC_PRIVATE when the seg­
ment has been removed until all processes
attached to the segment detach it.)
The facility access modes and flags: The mode
consists of 11 characters that are interpreted
as follows:
The first two characters are:

R if a process is waiting on a
msgrcv;

S if a process IS waiting on a
msgsnd;

D if the associated shared memory
segment has been removed. It
will disappear when the last pro­
cess attached to the segment
detaches it;

C if the associated shared memory
segment is to be cleared when
the first attach is executed;
if the corresponding special flag
is not set.

The next 9 characters are interpreted as three
sets of three bits each. The first set refers to
the owner's permissions; the next to permis­
sions of others in the user-group of the facility
entry; and the last to all others. Within each
set, the first character indicates permission to
read, the second character indicates permis­
sion to write or alter the facility entry, and
the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

- 2 -

if the indicated permission is not
granted.

1PCS (1)

FILES

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

/unix
/dev/kmem
/etc/passwd
/etc/group

SEE ALSO

(all)

(all)

(a,c)

(a,c)

(a,o)

(a,o)

(a,b)

(a,p)

(a,p)

(a,t)

(a,t)

(a,t)

(a,o)

(a,b)

(a,p)

(a,p)

(a,t)

(a,t)

(a,b)

(a,t)

IPCS (1)

The login name of the owner of the facility
entry.
The group name of the group of the owner of
the facility entry.
The login name of the creator of the facility
entry.
The group name of the group of the creator of
the facility entry.
The number of bytes in messages currently
outstanding on the associated message queue.
The number of messages currently outstand­
ing on the associated message queue.
The maximum number of bytes allowed in
messages outstanding on the associated mes­
sage queue.
The process ID of the last process to send a
message to the associated queue.
The process ID of the last process to receive a
message from the associated queue.
The time the last message was sent to the
associated queue.
The time the last message was received from
the associated queue.
The time when the associated entry was
created or changed.
The number of processes attached to the asso­
ciated shared memory segment.
The size of the associated shared memory seg­
ment.
The process ID of the creator of the shared
memory entry.
The process 1D of the last process to attach or
detach the shared memory segment.
The time the last attach was completed to the
associated shared memory segment.
The time the last detach was completed on
the associated shared memory segment.
The number of semaphores in the set associ­
ated with the semaphore entry.
The time the last semaphore operation was
completed on the set associated with the
semaphore entry.

system name list
memory
user names
group names

msgop(2), semop(2), shmop(2), stdipc(3C).

- 3-

IPCS (1) IPCS (1)

BUGS
Things can change while £pcs is running; the picture it gives is
only a close approximation to reality.

- 4-

JOIN (1) JOIN (1)

NAME
join - relational database operator

SYNOPSIS
join [options 1 filel file2

DESCRWTION
Jo£n forms, on the standard output, a Jom of the two relations
specified by the lines of file1 and file 2 . If file1 is -, the standard
input is used.

Ft"le1 and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, normally the
first in each line.

There is one line in the output for each pair of lines in file1 and
file2 that have identical join fields. The output line normally con­
sists of the common field, then the rest of the line from file1, then
the rest of the line from file2.

Fields are normally separated by blank, tab or new-line. In this
case, multiple separators count as one, and leading separators are
discarded.

These options are recognized:

-an In addition to the normal output, produce a line for
each unpairable line in file n, where n is I or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the
m th field in each file.

-0 l£st Each output line comprises the fields specified in l£st,
each element of which has the form n.m, where n is a
file number and m is a field number.

-tc Use character c as a separator (tab character). Every
appearance of c in a line is significant.

SEE ALSO

BUGS

awk(l), comm(l), sort(l).

With default field separation, the collating sequence is that of
sort -b; with -t, the sequence is that of a plain sort.

The conventions of join, sort, comm, un£q and awk(1) are wildly
incongruous.

- 1 -

KILL (1) KILL (1)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo 1 PID ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This
will normally kill processes .that do not catch or ignore the signal.
The process number of each asynchronous process started with &
is reported by the Shell (unless more than one process is started in
a pipeline, in which case the number of the last process in the
pipeline is reported). Process numbers can also be found by using
ps(l).

The details of the kill are described in kill(2). For example, if pro­
cess number 0 is specified, all processes in the process group are
signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by - is given as first argument, that
signal is sent instead of terminate (see s£gnal(2)). In particular
"kill - 9 ... " is a sure kill.

SEE ALSO
ps(l), sh(1), kill(2), signal(2).

- 1 -

KSH (1) KSH(1)

NAME
ksh - Korn shell command programming language

SYNOPSIS
ksh [-acerhikmnorstuvx 1 [- 0 option ... 1 [arg

DESCRIPTION
Ksh is a command programming language that executes com­
mands read from a terminal or a file. See Invocation below for the
meaning of arguments to the Korn shell.

Definitions.
A metacharacter is one of the following characters:

; & () < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore.
Identifiers are used as names for aliases, functions, and named
parameters. A word is a sequence of characters separated by one
or more non-quoted metacharacters.

Commands.
A simple-command is a sequence of blank separated words which
may be preceded by a parameter assignment list (see Environment
below). The first word specifies the name of the command to be
executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command
name is passed as argument 0 (see exec(2)). The value of a
simple-command is its exit status if it terminates normally, or
(octal) 200+status if it terminates abnormally (see signal(2) for a
list of status values).

A pipeline is a sequence of one or more commands separated by I.
The standard output of each command but the last is connected
by a pipe(2) to the standard input of the next command. Each
command is run as a separate process; the Korn shell waits for the
last command to terminate. The exit status of a pipeline is the
exit status of the last command.

A 12'st is a sequence of one or more pipelines separated by;, &,
&&, or II, and optionally terminated by;, &, or 1&. Of these five
symbols, ;, &, and 17 have equal precedence, which is lower than
that of && and II. The symbols && and II also have equal pre­
cedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (i.e., the Korn shell does not wait for
that pipeline to finish). The symbol 1& causes asynchronous exe­
cution of the preceding command or pipeline with a two-way pipe
established to the parent shell. The standard input and output of
the spawned command can be written to and read from by the
parent Shell using the -p option of the special commands read
and print described later. Only one such command can be active
at any given time. The symbol && (II) causes the list following it
to be executed only if the preceding pipeline returns a zero value.
An arbitrary number of new-lines may appear in a list, instead of
semicolons, to delimit commands.

- 1 -

KSH(1) KSH(1)

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that
of the last simple-command executed in the command.

for identifier [in word ••• 1 do list done
Each time a for command is executed, identifier is set to
the next word taken from the in word list. If in word •.•
is omitted, then the for command executes the do list
once for each positional parameter that is set (see Param­
eter Substitution below). Execution ends when there are
no more words in the list.

select identifier [in word ••• 1 do list done
A select command prints on standard error (file descriptor
2), the set of words, each preceded by a number. If in
word ••• is omitted, then the positional parameters are
used instead (see Parameter Substitution below). The
PS3 prompt is printed and a line is read from the stan­
dard input. If this line consists of the number of one of
the listed words, then the value of the parameter
identifier is set to the word corresponding to this number.
If this line is empty the selection li~t is printed again.
Otherwise the value of the parameter iden#fier is set to
null. The contents of the line read from standard input is
saved in the parameter REPLY. The list is executed for
each selection until a break or end-oJ-file is encountered.

case word in [pattern [I pattern 1 •••) list; ; 1 ••• esac
A case command executes the list associated with the first
pattern that matches word. The form of the patterns is
the same as that usef for file-name generation (see Fz"le
Name Generation below).

if list then list [elif list then list 1 ••• [else list 1 fi
The list following if is executed and, if it returns a zero
exit status, the list following elif is executed and, if its
value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero
exit status.

while list do list done
until liddol~tdone

A while command repeatedly executes the while list and,
if the exit status of the last command in the list is zero,
executes the do list; otherwise the loop terminates. If no
commands in the do list are executed, then the while
command returns a zero exit status; until may be used in
place of while to negate the loop termination test.

(Ust) Execute list in a separate environment. Note that, if two
adjacent open parentheses are needed for nesting, a space
must be inserted to avoid arithmetic evaluation as
described below.

- 2 -

KSH (1) KSH (1)

{ list; }
List is simply executed. Note that { is a keyword and
requires a blank in order to be recognized.

function identifier { list; }
identifier () { list; }

Define a function which is referenced by identifier. The
body of the function is the list of commands between {
and} (see Functions below).

time pipeline
The pipeline is executed and the elapsed time as well as
the user and system time are printed on standard error.

The following keywords are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do done {
} function select time

Comments.
A word beginning with # causes that word and all the following
characters up to a new-line to be ignored.

Aliasing.
The first word of each command is replaced by the text of an
alias if an alias for this word has been defined. The first charac­
ter of an alias name can be any printable character, but the rest
of the characters must be the same as for a valid identifier. The
replacement string can contain any valid Korn Shell script includ­
ing the metacharacters listed above. The first word of each com­
mand of the replaced text will not be tested for additional aliases.
Aliases can be used to redefine special built-in commands but can­
not be used to redefine the keywords listed above. Aliases can be
created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in
effect for sub-shells but must be reinitialized for separate invoca­
tions of the Korn Shell (see Invocation below).

Aliasing is performed when scripts are read, not while they are
executed. Therefore, for an alias to take effect the alias command
has to be executed before the command which references the alias
is read.

Aliases are frequently used as a shorthand for full path names.
An option to the aliasing facilIty allows the value of the alias to be
automatically set to the full pathname of the corresponding com­
mand. These aliases are called tracked aliases. The value of a
tracked alias is defined the first time the identifier is read and
becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will
redefine the value. Several tracked aliases are compiled into the
shell. The - h option of the set command makes each command
name which is an identifier into a tracked alias.

- 3-

KSH(1) KSH(1)

The following exported aUases are compiled into the shell but can
be unset or redefined:

echo= 'print -'
false= 'let 0'
history='fc -1'
integer= 'typeset -i'
pwd= 'print - $PWD'
r='fc -e-'
true='let l'
type='whence -v'
hash='alias -t'

Tilde Substitution.
After alias substitution is performed, each word is checked to see
if it begins with an unquoted -. If it does, then the word up to a
/ is checked to see if it matches a user name in the / etc/ passwd
file. If a match is found, the - and the matched login name are
replaced by the login directory of the matched user. This is called
a Wde substitution. If no match is found, the original text is left
unchanged. A - by itself, or in front of a /, is replaced by the
value of the HOME parameter. A - followed by a + or - is
replaced by the value of the parameter PWD and OLDPWD
respectively.

In addition, the value of each keyword parameter is checked to see
if it begins with a - or if a - appears after a:. In either of these
cases a tilde substitution is attempted.

Command Substitution.
The standard output from a command enclosed in a pair of grave
accents (") may be used as part or all of a word; trailing new­
lines are removed. The command substitution "cat file" can be
replaced by the equivalent but faster "< file". Command substi­
tution of special commands that do not perform input/output
redirection are carried out without creating a separate process.

Parameter Substitution.
A parameter is an identifier, a digit, or any of the characters lie,

@, #, ?, -, $, and!. A named parameter (a parameter denoted
by an identifier) has a value and zero or more attrt"butes. Named
parameters can be assigned values and attributes by using the
typeset special command. The attributes supported by the Korn
Shell are described later with the typeset special command.
Exported parameters pass values and attributes to sub-shells but
only values to the environment.

The Korn Shell supports a limited one-dimensional array facility.
An element of an array parameter is referenced by a subscript. A
subscrt"pt is denoted by a [, followed by an arithmett"c expresst"on
(see Arithmetic Evaluation below) followed by a]. The value of
all subscripts must be in the range of 0 through 127. Arrays need
not be declared. Any reference to a named parameter with a valid
subscript is legal and an array will be created if necessary.
Referencing an array without a subscript is equivalent to referenc­
ing the first element.

- 4 -

KSH (1) KSH (1)

The value of a named parameter may also be assigned by writing:

name =value [name = value 1 •••

lf the integer attribute, -i, is set for name, the value is subject to
arithmetic evaluation as described below. Positional parameters,
parameters denoted by a number, may be assigned values with the
set special command. Parameter $0 is set from argument zero
when the Korn Shell is invoked. The character $ is used to intro­
duce substitutable parameters.

${parameter}
The value, if any, of the parameter is substituted. The
braces are required when parameter is followed by a
letter, digit, or underscore that is not to be interpreted as
part of its name or when a named parameter is sub­
scripted. If parameter is a digit then it is a positional
parameter. If parameter is '" or @, then all the positional
parameters, starting with $1, are substituted (separated
by spaces). If an array identzjier with subscript'" or @ is
used, then the value for each of the elements is substi­
tuted (separated by spaces).

${ #parameter}
If parameter is not "', the length of the value of the
parameter is substituted. Otherwise, the number of posi­
tional parameters is substituted.

${ #z"denti/z"er ["']}
The number of elements in the array identzjier is substi­
tuted.

${parameter:-word}
If parameter is set and non-null then substitute its value;
otherwise substitute word.

${p arameter:= word}
If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional
parameters may not be assigned to in this way.

${p arameter:? word}
If parameter is set and is non-null then substitute its
value; otherwise, print word and exit from the shell. If
word is omitted then a standard message is printed.

${parameter :+word}
If parameter is set and is non-null then substitute word;
otherwise substitute nothing.

${parameter#pattern}
${parameter##pattern}

If the Korn Shell pattern matches the beginning of the
value of parameter, then the value of this substitution is
the value of the parameter with the matched portion
deleted; otherwise the value of this parameter is substi­
tuted.

- 5 -

KSH(1)

${parameter%pattern}
${parameter%%pattern}

KSH(1)

If the Korn Shell pattern matches the end of the value of
parameter, then substitute the value of parameter with
the matched part deleted; otherwise substitute the value
of parameter.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is exe­
cuted only if d is not set or is null:

echo ${d:- 'pwd'}

If the colon (:) is omitted from the above expressions, then the
shell only checks whether parameter is set or not.

The following parameters are automatically set by the Korn Shell:

The number of positional parameters in decimal.

Flags supplied to the Korn Shell on invocation or
by the set command.

? The decimal value returned by the last executed
command. I

$ The process number of this shell.

The last argument of the previous command.

The process number of the last background com­
mand invoked.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd com-
mand. .

RANDOM
Each time this parameter is referenced, a random
integer is generated. The sequence of random
numbers can be initialized by assigning a numeric
value to RANDOM.

REPLY
This parameter is set by the select statement and
by the read special command when no arguments
are supplied.

The following parameters are used by the Korn shell:

CD PATH
the search path for the cd command.

COLUMNS
If this variable is set, the value is used to define
the width of the edit window for the shell edit
modes and for printing select lists.

EDITOR
If the value of either of these variables ends in

- 6-

KSH (1) KSH (1)

emacs, gmacs, or vi, then the corresponding
option (see Special Command set below) will be
turned on.

ENV If this parameter is set, then command and
parameter substitution is performed on the value
to generate the pathname of the script that will
be executed when the Korn shell is invoked (see
Invocation below). This file is typically used for
al£as and function definitions.

FCEDIT
The default editor name for the fc command.

IFS Internal field separators, normally space, tab,
and new-line, that are used to separate command
words which result from command or parameter
substitution and for separating words with the
special command read.

mSTFILE
If this parameter is set when the Korn shell is
invoked, then the value is the pathname of the
file that will be used to store the command his­
tory (see Command Re-entry below).

mSTSIZE

HOME

If this parameter is set when the Korn shell is
invoked, then the number of previously entered
commands that are accessible by this shell will be
greater than or equal to this number. The default
is 128.

The default argument (home directory) for the cd
command.

MAIL If this parameter is set to the name of a mail file
and the MAILP A TH parameter is not set, then
the shell informs the user of arrival of mail in the
specified file.

MAIL CHECK
This variable specifies how often (in seconds) the
shell will check for changes in the modification
time of any of the files specified by the MAIL­
PATH or MAIL parameters. The default value
is 600 seconds. If set to 0, the shell will check
before each prompt.

MAIL PATH
A colon (:) separated list of file names. If this
parameter is set then the shell informs the user of
any modifications to the specified files that have
occurred within the last MAILCHECK seconds.
Each file name can be followed by a ? and a mes­
sage that will be printed. The message will
undergo parameter and command substitution

- 7 -

KSH (1)

PATH

KSH(1)

with the parameter $_ defined as the name of the
file that has changed. The default message is you
have mail in $_."

The search path for commands (see Execution
below).

PS I The value of this parameter is expanded for
parameter substitution to define the primary
prompt string, which by default is "$". The char­
acter ! in a prompt string is replaced by the com­
mand number (see Command Re-entry below).

PS2 Secondary prompt string, by default" >".
PS3 Selection prompt string used within a select loop,

by default "#?".

SHELL
The pathname of the shell is kept in the environ­
ment. At invocation, if the value of this variable
contains an r in the basename, then the shell
becomes restricted.

TMOUT
If set to a value greater than zero, the shell will
terminate if a command is not entered within the
prescribed number of seconds. (Note that the
shell can be compiled with a maximum bound for
this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in emacs,
gmacs, or vi, then the corresponding option (see
Special Command set below) will be turned on.

The shell gives default values to PATH, PSI, PS2, MAIL­
CHECK, TMOUT, and IFS, while HOME, ENV, SHELL,
and MAIL are not set at all by the shell (although HOME is set
by login(1M)). On some systems MAIL and SHELL are also set
by login(IM)).

Blank Interpretation.
After parameter and command substitution, the results of substi­
tution are scanned for the field separator characters those found in
IFS), and split into distinct arguments where such characters are
found. Explicit null arguments ("" or ") are retained. Implicit
null arguments (those resulting from parameters that have no
values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the
characters ., ?, and [unless the -f option has been set. If one of
these characters appears then the word is regarded as a pattern.
The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is found that matches the pat­
tern, then the word is left unchanged. When a pattern is used for
file name generation, the character. at the start of a file name or

- 8-

KSH(1) KSH(1)

immediately following a /, as well as the character / itself, must
be matched explicitly. In other instances of pattern matching the
/ and. are not treated specially.

*
?

[...]

Matches any string, including the null string.

Matches any single character.

Matches anyone of the enclosed characters. A
pair of characters separated by - matches any
character lexically between the pair, inclusive. If
the first character following the opening "[Jl is a
"! Jl then any character not enclosed is matched.
A - can be included in the character set by put­
ting it as the first or last character.

Quoting.
Each of the metacharacters listed above (see DefiniUons above)
has a special meaning to the Korn shell and causes termination of
a word unless quoted. A character may be quoted (i.e., made to
stand for itself) by preceding it with a \. The pair \new-line is
ignored. All characters enclosed between a pair of single quote
marks ("), except a single quote, are quoted. Inside double quote
marks (""), parameter and command substitution occurs and \
quotes the c,haracters \, " ", and $. "$*" is equivalent to "$1 $2
.•• ", whereas "$@" is equivalent to "$1" "$2" •.•.

The special meaning of keywords can be removed by quoting any
character of the keyword. The recognition of special command
names listed below cannot be altered by quoting them.

Arithmetic Evaluation.
An ability to perform integer arithmetic is provided with the spe­
cial command let. Evaluations are performed using long arith­
metic. Constants are of the form [base#]nwhere base is a
decimal number between 2 and 36 representing the arithmetic
base and n is a number in that base. If base is omitted then base
10 is used.

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command.
When this attribute is selected the first assignment to the parame­
ter determines the arithmetic base to be used when parameter
substitution occurs.

Since many of the arithmetic operators require quoting, an alter­
native form of the let command is provided. For any command
which begins with a (C all the characters until a matching)) are
treated as a quoted expression. More precisely, « ...)) is
equivalent to let" •.• ".

Prompting.
When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secon­
dary prompt (i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be

- 9 -

KSH (1) KSH (1)

redirected using a special notation interpreted by the Korn shell.
The following may appear anywhere in a simple-command or may
precede or follow a command and are not passed on to the invoked
command. Command and parameter substitution occurs before
word or d£git is used except as noted below. File name generation
occurs only if the pattern matches a single file and blank interpre­
tation is not performed.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If
the file does not exist then it is created; otherwise it is
truncated to zero length.

> > word Use file word as standard output. If the file exists then
output is appended to it (by first seeking to the end­
of-file); otherwise, the file is created.

< <[-]word
The shell input is read up to a line that is the same as
word, or to an end-of-file. No parameter substitution,
command substitution, or file name generation is per­
formed on word. The reSUlting document, called a
here-document,
becomes the standard input. If any character of word

is quoted, then no interpretation is placed upon the
characters of the document; otherwise, parameter and
command substitution occurs, \new-line is ignored,
and \ must be used to quote the characters \, $, " and
the first character of word. If - is appended to < <,
then all leading tabs are stripped from word and from
the document.

< & digit The standard input is duplicated from file descriptor
digit (see dup (2)). Similarly for the standard output
using > & digit.

<&- The standard input is closed. Similarly for the stan­
dard output using > &-.

If one of the above is preceded by a digit, then the file descriptor
number referred to is that specified by the digit (instead of the
default 0 or I). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of
file descriptor 1.

The order in which redirections are specified is significant. The
shell evaluates each redirection in terms of the (file descriptor,
file) association at the time of evaluation. For example:

... I>fname 2>&1

first associates file descriptor 1 with file fname. It then associates
file descriptor 2 with the file associated with file descriptor 1 (i.e.,
fname). If the order of redirections were reversed, file descriptor 2
would be associated with the terminal (assuming file descriptor 1

- 10-

KSH (1) KSH(1)

had been) and then file descriptor 1 would be associated with file
fname.

If a command is followed by & and job control is not active, then
the default standard input for the command is the empty file
/ dey / null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as
modified by input/output specifications. .

Environment.
The environment (see environ(5)) is a list of name-value pairs that
is passed to an executed program in the same way as a normal
argument list. The names must be identifiers and the values are
character strings. The Korn shell interacts with the environment
in several ways. On invocation, the Korn shell scans the environ­
ment and creates a parameter for each name found, giving it the
corresponding value and marking it export. Executed commands
inherit the environment. If the user modifies the values of these
parameters or creates new ones, using the export or typeset -x
commands, they become part of the environment. The environ­
ment seen by any executed command is thus composed of any
name-value pairs originally inherited by the Korn shell, whose
values may be modified by the current shell, plus any additions
which must be noted in export or typeset -x commands.

The environment for any simple-command or function may be
augmented by prefixing it with one or more parameter assign­
ments. A parameter assignment argument is a word of the form
identifier=value. Thus:

TERM=450 cmd args

and

(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all parameter assignment arguments are
placed in the environment, even if they occur after the command
name. The following first prints a=b c and then c:

Functions.

echo a=b c
set -k
echo a=b c

The function keyword, described in the Commands section
above, is used to define shell functions. Shell functions are read in
and stored internally. Alias names are resolved when the function
is read. Functions are executed like commands with the argu­
ments passed as positional parameters (see Execution below).
Functions execute in the same process as the caller and share all
files, traps (other than EXIT and ERR), and present working
directory with the caller. A trap set on EXIT inside a function is
executed after the function completes. Ordinarily, variables are
shared between the calling program and the function. However,
the typeset special command used within a function defines local

- 11 -

KSH(1) KSH(1)

variables whose scope includes the current function and all func­
tions it calls.

The special command return is used to return from function
calls. Errors within functions return control to the caller.

Function identifiers can be listed with the -f option of the
typeset special command. The text of functions will also be
listed. Functions can be undefined with the -f option of the
unset special command.

Ordinarily, functions are unset when the shell executes a shell
script. The -xf option of the typeset command allows a function
to be exported to scripts that are executed without a separate
invocation of the shell. Functions that need to be defined across
separate invocations of the shell should be placed in the ENV file.

Jobs.
If the monitor option of the set command is turned on, an
interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns
them small integer numbers. When a job is started asynchro­
nously with &, the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job
number 1 and had one (top-level) process, whose process ID was
1234.

This paragraph and the next require features that are not in all
versions of UNIX and may not apply. If you are running a job and
wish to do something else you may press the key combination AZ
(control-Z) which sends a STOP signal to the current job. The
shell will then normally indicate that the job has been «Stopped,"
and print another prompt. You can then manipulate the state of
this job, putting it in the background with the bg command, or
run some other commands and then eventually bring the job back
into the foreground with the foreground command fg. A AZ takes
effect immediately and is like an interrupt in that pending output
and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from
the terminal. Background jobs are normally allowed to produce
output, but this can be disabled by giving the command ((stty tos­
top.)J If you set this tty option, then background jobs will stop
when they try to produce output like they do when they try to
read input.

There are several ways to refer to jobs in the Korn shell. The
character % introduces a job name. If you wish to refer to job
number I, you can name it as %1. Jobs can also be named by
prefixes of the string typed in to kill or restart them. Thus, on
systems that support job control, 'rg%ed ~ would normally restart
a suspended ed(l) job, if there were a suspended job whose name
began with the string (ed'.

- 12 -

KSH (1) KSH(1)

The shell maintains a notion of the current and previous jobs. In
output pertaining to jobs, the current job is marked with a + and
the previous job with a -. The abbreviation %+ refers to the
current job and %- refers to the previous job. %% is also a
synonym for the current job.

This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no
further progress is possible, but only just before it prints a
prompt. This is done so that it does not otherwise disturb your
work.

When you try to leave the shell while jobs are running or stopped,
you will be warned that 'You have stopped(running) jobs.' You
may use the jo bs command to see what they are. If you do this
or immediately try to exit again, the shell will not warn you a
second time, and the stopped jobs will be terminated.

Signals.
The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by & and the job monitor
option is not active. Otherwise, signals have the values inherited
by the shell from its parent, with the exception of signal 11 (but
see also the trap command below).

Execution.
Each time a command is executed, the above substitutions are
carried out. If the command name matches one of the Special
Commands listed below, it is executed within the current shell
process. Next, the command name is checked to see if it matches
one of the user defined functions. If it does, the positional param­
eters are saved and then reset to the arguments of the function
call. When the funct£on completes or issues a return, the posi­
tional parameter list is restored and any trap set on EXIT within
the function is executed. The value of a functz·on is the value of
the last command executed. A function is also executed in the
current shell process. If a command name is not a speC£al com­
mand or a user defined function, a process is created and an
attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the direc­
tory containing the command. Alternative directory names are
separated by a colon (:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and /usr /bin, in that
order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign, between
colon delimiters, or at the end of the path list. If the command
name contains a / then the search path is not used. Otherwise,
each directory in the path is searched for an executable file. If the
file has execute permission but is not a directory or an a.out file,
it is assumed to be a file containing shell commands. A sub-shell
is spawned to read it. All non-exported aliases, functions, and
named parameters are removed in this case. A parenthesized com­
mand is also executed in a sub-shell.

- 13 -

KSH(1) KSH(l)

Command Re-entry_
The text of the last mSTSIZE (default 128) commands entered
from a terminal device is saved in a hz"story file. The file
$HOME/ .history is used if the HISTFILE variable is not set
or is not writable. A shell can access the commands of all z"nterac­
tive shells which use the same named mSTFILE. The special
command fc is used to list or edit a portion of this file. The por­
tion of the file to be edited or listed can be selected by number or
by giving the first character or characters of the command. A sin­
gle command or range of commands can be specified. If you do
not specify an editor program as an argument to fc then the value
of the parameter FCEDIT is used. If FCEDIT is not defined
then / bz"n/ ed is used. The edited command(s) are printed and re­
executed upon leaving the editor. The editor name - is used to
skip the editing phase and to re-execute the command. In this
case a substitution parameter of the form old =new can be used
to modify the command before execution. For exa.--aple, if r is
aliased to 'fc -e -' then typing 'r bad=good c' will re-execute
the most recent command which starts with the letter c, replacing
the string bad with the string good.

In-line Editing Options.
Normally, each command line entered from a terminal device is
simply typed followed by a new-line (,RETURN' or (LINE
FEED'). If any of the options emacs, gmacs, or vi is active, the
user can edit the command line. To be in anyone of these edit
modes set the corresponding option. An editing option is
automatically selected each time the VISUAL or EDITOR vari­
able is assigned a value ending in one of these option names.

The editing features require that the user's terminal accept
(RETURN' as carriage return without line feed and that a space
(' ') must overwrite the current character on the screen. ADM ter­
minal users should set the ((space- advance" switch to (space'.
Hewlett-Packard series 2621 terminal users should set the straps
to (bcGHxZ etX'.

The editing modes implement a concept where the user is looking
through a window at the current line. The window width is the
value of COLUMNS if it is defined, otherwise 80. If the line is
longer than the window width minus two, a mark is displayed at
the end of the window to notify the user. As the cursor moves
and reaches the window boundaries the window will be centered
about the cursor. The mark is a > (<, *) if the line extends on
the right (left, both) side(s) of the window.

Emacs Editing Mode_
This mode is entered by enabling either the emacs or gmacs
option. The only difference between these two modes is the way
they handle AT. To edit, the user moves the cursor to the point
needing correction and then inserts or deletes characters or words
as needed. All the editing commands are control characters or
escape sequences. The notation for control characters is caret (A)
followed by the character. For example, AF is the notation for
control-F. This is entered by pressing (f' while holding down the

- 14 -

KSH(1) KSH(1)

'CTRL' (control) key. The 'SHIFT' key is not pressed. (The
notation A? indicates the DEL (delete) key.)

The notation for escape sequences is M- followed by a character.
For example, M-f (pronounced Meta f) is entered by pressing
ESC (ASCII 033) followed by 'f'. (M-F would be the notation for
ESC followed by 'SHIFT' (capital) 'F'.)

All edit commands operate from any place on the line (not just at
the beginning). Neither the ((RETURN" nor the ((LINE FEED"
key is entered after edit commands except when noted.

AF Move cursor forward (right) one character.

M-f

AB

M-b
AA

AE
A] char

AX "X

erase

AD

M-d

M-"H

M-h
M_A?

kill

Move cursor forward one word. (The editor's idea of a
word is a string of characters consisting of only letters,
digits and underscores.)

Move cursor backward (left) one character.

Move cursor backward one word.

Move cursor to start of line.

Move cursor to end of line.

Move cursor to character char on current line.

Interchange the cursor and mark.

(User-defined erase character as defined by the stty
command, usually "H or #.) Delete previous character.

Delete current character.

Delete current word.

(Meta-backspace) Delete previous word.

Delete previous word.

(Meta-DEL) Delete previous word (if your interrupt
character is "? (DEL, the default) then this command
will not work).

Transpose current character with next character III

emacs mode. Transpose two previous characters III

gmacs mode.

Capitalize current character.

Capitalize current word.

Kill from the cursor to the end of the line. If given a
parameter of zero then kill from the start of line to the
cursor.

Kill from the cursor to the mark.

Push the region from the cursor to the mark on the
stack.

(User-defined kill character as defined by the stty com­
mand, usually AG or @.) Kill the entire current line. If
two kill characters are entered in succession, all kill
characters from then on cause a line feed (useful when

- 15 -

KSH(1)

eo!

M-<

M->
"N

KSH(1)

using paper terminals).

Restore last item removed from line (Yank item back
to the line.)

Line feed and print current line.

(Null character) Set mark.

(Meta space) Set mark.

(New line) Execute the current line.

(Return) Execute the current line.

End-of-file character, normally D, will terminate the
shell if the current line is null.

Fetch the previous command. Each time p is entered
the previous command back in time is accessed.

Fetch the lest recent (oldest) history line.

Fetch the most recent (youngest) history line.

Fetch next command. Each time AN is entered the
next command forward in time is accessed.

Reverse search history for a previous command line
containing string. If a parameter of zero if given the
search is forward. Strz"ng is terminated by a
"RETURN)) or "NEW LINE)).

Operate-Execute the current line and fetch the next
line relative to the current line from the history file.

M-dz"gz"ts (Escape) Define numeric parameter, the digits are
taken as a parameter to the next command. The com­
mands that accept a parameter are F, B, erase, AD,
.... K, "R, "P, and "N.

M-letter Soft-key-Your alias list is searched for an alias by the
name _ letter. If an alias of this name is defined, its
value will be inserted on the line. The letter must not
be one of the above meta-functions.

M - _ The last parameter of the previous command IS

inserted on the line.

M-. The last parameter of the previous command IS

inserted on the line.

M-* Attempt file name generation on the current word .

.... U Multiply parameter of next command by 4.

\ Escape next character. Editing characters, the user's
erase, kill and interrupt (normally A?) characters may
be entered in a command line or in a search string if
preceded by a \. The \ removes the next character's
editing features (if any).

"V Display version of the shell.

Vi Editing Mode.
There are two typing modes. Initially, when you enter a

- 16 -

KSH (1) KSH(1)

command you are in the £nput mode. To edit, the user enters con­
trol mode by typing ESC (033) and moves the cursor to the point
needing correction and then inserts or deletes characters or words
as needed. Most control commands accept an optional repeat
count prior to the command.

When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is
1200 baud or greater and it contains any control characters or less
than one second has elapsed since the prompt was printed. The
ESC character terminates canonical processing for the remainder
of the command and the user can then modify the command line.
This scheme has the advantages of canonical processing with the
type-ahead echoing of raw mode. If the option viraw is also set,
the terminal will always have canonical processing disabled. This
mode is implicit for systems that do not support two alternate
end-of-line delimiters, and may be helpful for certain terminals.

Input Edit Commands

erase (User-defined erase character as defined by the
stty command, usually "H or #.) Delete previ­
ous character.

"W Delete the previous blank separated word.

"D Terminate the shell.

"V Escape next character. Editing characters, the
user's erase or kill characters may be entered
in a command line or in a search string if pre­
ceded by a "V. The "V removes the next
character's editing features (if any).

\ Escape the next erase or km character.

Motion Edit Commands

These commands will move the cursor.

[count]} Cursor forward (right) one character.

[count]w Cursor forward one alpha-numeric word.

[count]W Cursor to the beginning of the next word that

[count]e

[count]E

[count]h

[count]b

[count]B

[count]rc

[count]Fc

follows a blank.

Cursor to end of word.

Cursor to end of the current blank delimited­
word.

Cursor backward (left) one character.

Cursor backward one word.

Cursor to preceding blank-separated word.

Find the next character c in the current line.

Find the previous character c in the current
line.

[count]tc Equivalent to r followed by h.

- 17 -

KSH(1) KSH(1)

[count]Tc Equivalent to F followed by 1.

o

$

Repeats the last single character find com­
mand, f, F, t, or T.

Reverses the last single character find com­
mand.

Cursor to start of line.

Cursor to first non-blank character in line.

Cursor to end of line.

Search Edit Commands

These commands access your command history.

[count]k Fetch previous command. Each time k is
entered the previous command back in time is
accessed.

[count]­

[count]j

Equivalent to k.

Fetch next command. Each time j is entered
the next command forward in time is accessed.

[count]+ Equivalent to j.

[count]G The command number count is fetched. The
default is the least recent history command.

/ string

?string

n

N

/

Search backward through history for a previ­
ous command containing string. String is ter­
minated by a "RETURN" or "NEW LINE".
If string is null the previous string will be
used.

Same as / except that search will be in the for­
ward direction.

Search for next match of the last pattern to /
or ? commands.

Search for next match of the last pattern to /
or ?, but in reverse direction.

Search history for the string entered by the
previous / command.

Text Modification Edit Commands

These commands will modify the line.

a Enter input mode and enter text after the
current character.

A Append text to the end of the line. Equivalent
to $a.

[count]cmotion
c[count]motion

Delete current character through the character
motion moves the cursor to and enter input
mode. If motion is c, the entire line will be
deleted and input mode entered.

- 18 -

KSH(1)

C

KSH(1)

Delete the current character through the end
of line and enter input mode. Equivalent to
e$.

D Delete the current character through the end
of line.

[count]dmotion
d [c ount] motion

Delete current character through the character
motion moves the cursor to. Equivalent to d$.
If motion is d, the entire line will be deleted.

Enter input mode and insert text before the
current character.

I Insert text before the beginning of the line.
Equivalent to the two character sequence Ai.

[count]P Place the previous text modification before the
cursor.

[count]p Place the previous text modification after the
cursor.

R Enter input mode and replace characters on
the screen with characters you type overlay
fashion.

rc Replace the current character with c.

[c 0 u nt]x Delete current character.

[count]X Delete preceding character.

[count]. Repeat the previous text modification com­
mand.

Invert the case of the current character and
advance the cursor.

[count]_ Causes the count word of the previous com­
mand to be appended and input mode entered.
The last word is used if count is omitted.

* Causes an * to be appended to the current
word and file name generation attempted. If
no match is found, it rings the bell. Other­
wise, the word is replaced by the matching
pattern and input mode is entered.

Other Edit Commands

Miscellaneous commands.

u

U

[count]v

Undo the last text modifying command.

Undo all the text modifying commands per­
formed on the line.

Returns the command fe -e
${VISUAL:-${EDITOR:-vi}} count in the
input buffer. If count is omitted, then the
current line is used.

- 19 -

KSH(1)

AL

AJ

AM

KSH(1)

Line feed and print current line. Has effect
only in control mode.

(New line) Execute the current line, regardless
of mode.

(Return) Execute the current line, regardless of
mode.

Equivalent to 1# < cr > . Useful for causing
the current line to be inserted in the history
without being executed.

Special Commands.
The following commands are executed in the shell process.
Input/Output redirection is permitted. File descriptor 1 is the
default output location. Parameter assignment lists preceding the
command do not remain in effect when the command completes
unless noted.

: [arg 000]

Parameter assignments remain in effect after the com­
mand completes. The command only expands parameters.
A zero exit code is returned .

• Fle [arg 00.]

Parameter assignments remain in effect after the com­
mand completes. Read and execute commands from file
and return. The commands are executed in the current
Shell environment. The search path specified by PATH
is used to find the directory containing file. If any argu­
ments arg are given, they become the positional parame­
ters. Otherwise the positional parameters are unchanged.

alias [-tx] [name[=value] 00.]

Alias with no arguments prints the list of aliases in the
form name =value on standard output. An al£as is
defined for each name whose value is given. A trailing
space in value causes the next word to be checked for alias
substitution. The -t flag is used to set and list tracked
aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the
aliases remain tracked. Without the -t flag, for each
name in the argument list for which no value is given, the
name and value of the alias is printed. The -x flag is
used to set or print exported aliases. An exported alias is
defined across sub-shell environments. Alias returns true
unless a name is given for which no alias has been defined.

bg [%job]
This command is only built-in on systems that support
job control. Puts the specified job into the background.
The current job is put in the background if job is not
specified.

break [n]
Exit from the enclosing for, while, until, or select loop,

- 20-

KSH (1) KSH(1)

if any. If n is specified then break n levels.

continue [n]
Resume the next iteration of the enclosing for, while,
until, or select loop. If n is specified then resume at the
nth enclosing loop.

cd [arg]
cd old new

This command can be in either of two forms. In the first
form it changes the current directory to arg. If arg is -
the directory is changed to the previous directory. The
shell parameter HOME is the default arg. The parame­
ter PWD is set to the current directory. The shell
parameter CDP ATH defines the search path for the
directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current
directory is specified by a null path name, which can
appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg
begins with a / then the search path is not used. Other­
wise, each directory in the path is searched for argo

The second form of cd substitutes the string new for the
string old in the current directory name, PWD, and tries
to change to this new directory.

eval [arg 000]

The arguments are read as input to the shell and the
resulting command(s) executed.

exec [arg 000]

Parameter assignments remain in effect after the com­
mand completes. If arg is given, the command specified
by the arguments is executed in place of this shell without
creating a new process. Input/output arguments may
appear and affect the current process. If no arguments are
given the effect of this command is to modify file descrip­
tors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that
are opened with this mechanism are closed when invoking
another program.

exit [n]
Causes the shell to exit with the exit status specified by n.
If n is omitted then the exit status is that of the last com­
mand executed. An end-of-file will also cause the shell to
exit except for a shell which has the £gnoreeof option (see
set below) turned on.

export [name 000]

The given names are marked for automatic export to the
env£ronment of subsequently-executed commands.

fc [-e ename] [-nlr] [j£rst] [last]

- 21 -

KSH (1) KSH(1)

fc -e - [old=new] [command]
In the first form, a range of commands from first to last is
selected from the last mSTSIZE commands that were
typed at the terminal. The arguments first and last may
be specified as numbers or as strings. A string is used to
locate the most recent command starting with the given
string. A negative number is used as an offset to the
current command number. If the flag -I is selected, the
commands are listed on standard output. Otherwise, the
editor program ename is invoked on a file containing these
keyboard commands. If ename is not supplied, then the
value of the parameter FCEDIT (default /bin/ed) is
used as the editor. When editing is complete, the edited
command(s) are executed. If last is not specified then it
will be set to first. If first is not specified the default is
the previous command for editing and -16 for listing.
The flag -r reverses the order of the commands and the
flag -n suppresses command numbers when listing. In
the second form the command is re-executed after the sub­
stitution old=new is performed.

fg [%job]
This command is only built-in on systems that support
job control. If job is specified it brings it to the fore­
ground. Otherwise, the current job is brought into the
foreground.

jobs [-I]
Lists the active jobs; given the -I option lists the process
IDs in addition to the normal information.

kill [-sig] process •••
Sends either the TERM (terminate) signal or the specified
signal to the specified jobs or processes. Signals are either
given by number or by names (as given in
/usr /include/signal.h, stripped of the prefix "SIGn).
The signal names are listed by "kill -In. There is no
default, saying just 'kill' does not send a signal to the
current job. If the signal being sent is TERM (terminate)
or HUP (hangup), then the job or process will be sent a
CaNT (continue) signal if it is stopped. The argument
process can be either a process ID or a job.

let arg •••
Each arg is an arz"thmet£c expressz"on to be evaluated. All
calculations are done as long integers and no check for
overflow is performed. Expressions consist of constants,
named parameters, and operators. The following set of
operators, listed in order of decreasing precedence, has
been implemented:

* /%

unary minus

logical negation

mUltiplication, division, remainder

- 22 -

KSH (1)

+- addition, subtraction

<= >= < > comparison

equality

!= inequality

arithmetic replacement

KSH (1)

Sub-expressions in parentheses 0 are evaluated first and
can be used to override the above precedence rules. The
evaluation within a precedence group is from right to left
for the = operator and from left to right for the others.

A parameter name must be a valid identz'jier. When
parameter is encountered, the value associated with the
parameter name is substituted and expression evaluation
resumes. Up to nine levels of recursion are permitted.

The return code is 0 if the value of the last expression is
non-zero, and 1 otherwise.

newgrp [arg •••]
Equivalent to exec newgrp arg •••

print [-Rnprsu[n]] [arg •••]
The Korn shell output mechanism. With no flags or with
flag -, the arguments are printed on standard output as
described by echo(1). In raw mode, -R or -r, the escape
conventions of echo are ignored. The -R option will print
all subsequent arguments and options other than -no The
-p option causes the arguments to be written onto the
pipe of the process spawned with 1& instead of standard
output. The -s option causes the arguments to be writ­
ten onto the history file instead of standard output. The
-u flag can be used to specify a one digit file descriptor
unit number n on which the output will be placed. The
default is 1. If the flag -D is used, no new-line is added
to the output.

read [-prsu[n]] [name?prompt] [name •••]
The shell input mechanism. One line is read and is bro­
ken up into words using the characters in IFS as separa­
tors. In raw mode, -r, a \ at the end of a line does not
signify line continuation. The first word is assigned to the
first name, the second word to the second name, etc.,
with leftover words assigned to the last name. The-p
option causes the input line to be taken from the input
pipe of a process spawned by the shell using 1&. If the -8

flag is present, the input will be saved as a command in
the history file. The flag -u can be used to specify a
one-digit file descriptor unit to read from. The file
descriptor can be opened with the exec special command.
The default value of n is O. If name is omitted then
REPLY is used as the default name. The return code is
o unless an end-of-file is encountered. An end-of-file with
the -p option causes cleanup for this process so that
another can be spawned. If the first argument contains a

- 23 -

KSH(1) KSH(l)

1, the remainder of this word is used as a prompt when the
shell is interactive. If the given file descriptor is open for
writing and is a terminal device then the prompt is placed
on this unit. Otherwise the prompt is issued on file
descriptor 2. The return code is 0 unless an end-of-file is
encountered.

readonly [name •••]
The given names are marked readonly and these names
cannot be changed by subsequent assignment.

return [n]
Causes a shell junctz"on to return to the invoking script
with the return status specified by n. If n is omitted then
the return status is that of the last command executed. If
return is invoked while not in a junct£on then it is the
same as an exit.

set [-aefhkmnotuvx] [-0 optt"on •••] [arg •••]
The flags for this command have meaning as follows:

-a All subsequent parameters that are defined are
automatically exported.

-e If the shell is non-interactive and if a command
fails, execute the ERR trap, if set, and exit
immediately. This mode is disabled while reading
profiles.

-f Disables file name generation.

-h Each command whose name is an iden#Jier
becomes a tracked alias when first encountered.

-k All parameter assignment arguments are placed in
the environment for a command, not just those
that precede the command name.

-m Background jobs will run in a separate process
group and a line will print upon completion. The
exit status of background jobs is reported in a
completion message. On systems with job control,
this flag is turned on automatically for interactive
shells.

-n Read commands but do not execute them.

-0 The following argument can be one of the follow-
ing option names:

allexport Same as -a.

errexit Same as -e.

emacs Puts you in an emacs style in-line
editor for command entry.

gmacs Puts you in a gmacs style in-line edi­
tor for command entry.

ignoreeof The shell will not exit on end-of-file.
The command exit must be used.

- 24 -

KSH (1) KSH (1)

keyword Same as - k.

markdir8 All directory names reSUlting from
file name genertion have a trailing /
appended.

monitor Same as -m.

noexec Same as -no

noglob Same as -f.

nounset Same as -u.

verbose Same as -v.

trackall Same as -h.

vi Puts you in insert mode of a vi style
in-line editor until you hit escape
(character 033). This puts you in
move mode. A return sends the line.

vira w Each character is processed as it is
typed in vi mode.

xtrace Same as -x.

If no option name is supplied then the current
option settings are printed.

-8 Sort the positional parameters.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substi-
tuting.

-v Print shell input lines as they are read.

-x Print comands and their arguments as they are
executed.

Turns off -x and -v flags and stops examining
arguments for flags.

Do not change any of the flags; useful in setting
$1 to a value beginning with -. If no arguments
follow this flag then the positional parameters are
unset.

Using + rather than - causes these flags to be turned off.
These flags can also be used upon invocation of the shell.
The current set of flags may be found in $-. The remain­
ing arguments are positional parameters and are assigned,
in order, to $1, $2, •••. If no arguments are given then the
values of all names are printed on the standard output.

shift [n]
The positional parameters from $n+l ... are renamed $1
••• , default n is 1. The parameter n can be any arithmetic
expression that evaluates to a non-negative number less
than or equal to $#.

- 25 -

KSH (1) KSH(1)

test [expr]
Evaluate conditional expression expr. See test(1) for
usage and description. The arithmetic comparison opera­
tors are not restricted to integers. They allow any arith­
metic expression. Four additional primitive expressions
are allowed:

-L file True if file is a symbolic link.

file1 -nt fz"le2
True if filet is newer than file 2 .

filet -ot file2
True if filet is older than file2.

filet -ef ft"le2
True if filet has the same device and i-node
number as file 2 .

times Print the accumulated user and system times for the shell
and for processes run from the shell.

trap [arg] [sig] •••
A rg is a command to be read and executed when the shell
receives signal(s) sig. (Note that arg is scanned once
when the trap is set and once when the trap is taken.)
Each sig can be given as a number or as the name of the
signal. Trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective. An
attempt to trap on signal 11 (memory fault) produces an
error. If arg is omitted then all trap(s) sig are reset to
their original values. If arg is the null string then this sig­
nal is ignored by the shell and by the commands it
invokes. If sig is ERR then arg will be executed whenever
a command has a non-zero exit code. This trap is not
inherited by functions. If sig is 0 or EXIT and the trap
statement is executed inside the body of a function, then
the command arg is executed after the function completes.
If sig is 0 or EXIT for a trap set outside any function
then the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of
commands associated with each signal number.

typeset [-FLRZefilprtux[n] [name[=value]] •••]
Parameter assignments remain in effect after the command
completes. When invoked inside a function, a new
instance of the parameter name is created. The parameter
value and type are restored when the function completes.
The following list of attributes may be specified:

-F This flag provides UNIX to host-name file mapping
on non-UNIX machines.

-L Left justify and remove leading blanks from
value. If n is non-zero it defines the width of the
field, otherwise it is determined by the width of
the value of first assignment. When the

- 26-

KSH(1)

-R

-z

-e

-f

-i

--'I

-p

-r

-t

-U

-x

KSH (1)

parameter is assigned to, it is filled on the right
with blanks or truncated, if necessary, to fit into
the field. Leading zeros are removed if the - Z
flag is also set. The - R flag is turned off.

Right justify and fill with leading blanks. If n is
non-zero it defines the width of the field, other­
wise. it is determined by the width of the value of
the first assignment. The field is left filled with
blanks or truncated from the end if the parameter
is reassigned. The -L flag is turned off.

Right justify and fill with leading zeros if the first
non-blank character is a digit and the -L flag has
not been set. If n is non-zero it defines the width
of the field, otherwise it is determined by the
width of the value of the first assignment.

Tag the parameter as having an error. This tag is
currently unused by the shell and can be set or
cleared by the user.

The names refer to function names rather than
parameter names. No assignments can be made
and the only other valid flag is -x.

Parameter is an integer. This makes arithmetic
faster. If n is non-zero it defines the output arith­
metic base, otherwise the first assignment deter­
mines the output base.

All upper-case characters converted to lower-case.
the upper-case flag, -U, is turned off.

The output of this command, if any, is written
onto the two-way pipe.

The given names are marked read-only and these
names cannot be changed by subsequent assign-
ment.

Tags the named parameters. Tags are user
definable and have no special meaning to the shell.

All lower-case characters are converted to upper­
case characters. The lower-case flag, -I, is turned
off.

The given names are marked for automatic export
to the environment of subsequently executed com-
mands.

Using + rather than - causes these flags to be turned off.
If no name arguments are given but flags are specified, a
list of names (and optionally the values) of the parame­
ters which have these flags set is printed. (Using + rather
than - keeps the values to be printed.) If no names and
flags are given, the names and attr£butes of all parameters
are printed.

- 27 -

KSH (1) KSH(1)

ulimit [-cdfmpt] [n]
-c Imposes a size limit of n blocks on the size of core

dumps (BSD only).

-d Imposes a size limit of n blocks on the size of the
data area (BSD only).

-f Imposes a size limit of n blocks on files written by
child processes (files of any size may be read).

-m Imposes a soft limit of n blocks on the size of phy­
sical memory (BSD only).

-p Changes the pipe size to n (UNIXjRT only).

-t Imposes a time limit of n seconds to be used by
each process (BSD only).

If no option is given, -f is assumed. If n is not given the
current limit is printed.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)).
If nnn is omitted, the current value of the mask is printed.

unalias name •••
The parameters given by the list of names are removed
from the ala"as list.

unset [-f] name •••
The parameters given by the list of names are unassigned,
i.e., their values and attributes are erased. Read-only
variables cannot be unset. If the flag -f is set, then the
names refer to /unci£on names.

wait [n]
Wait for the specified process and report its termination
status. If n is not given then all currently active child
processes are waited for. The return code from this com­
mand is that of the process waited for.

whence [-y] name •••
For each name, indicate how it would be interpreted if
used as a command name. The flag -y produces a more
verbose report.

Invocation.
If the Korn shell is invoked by exec (2), and the first character of
argument zero ($0) is -, then the shell is assumed to be a logz'n
shell and commands are read from /etc/profile and then from
either .profile in the current directory of $HOME/ .profile, if
either file exists. Next, commands are read from the file named by
performing parameter substitution on the value of the environ­
ment parameter ENV if the file exists. Commands are then read
as described below; the following flags are interpreted by the shell
when it is invoked:

-c strz'ng If the -c flag is present then commands are read from
str£ng.

- 28 -

KSH (1)

-s

-i

-r

KSH (1)

If the -s flag is present or if no arguments remain then
commands are read from the standard input. Shell
output, except for the output of some of the specz"al
commands listed above, is written to file descriptor 2.

If the -i flag is present or if the shell input and output
are attached to a terminal then this shell is £nterac­
t£ve. In this case TERMINATE is ignored (so that kill
o does not kill an interactive shell) and INTERRUPT
is caught and ignored (so that wait is interruptible).
In all cases, QUIT is ignored by the shell.

If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set
command above.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell
to return a non-zero exit status. If the shell is being used non­
interactively then execution of the shell file is abandoned. Other­
wise, the shell returns the exit status of the last command exe­
cuted (see also the exit command above).

/etc/passwd
/ etc / profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
cat(l), cd(l), echo(l), env(l), newgrp(l), test(l), umask(l), vi(l),
dup(2), exec(2), fork(2), pipe(2), signal(2), umask(2), ulimit(2),
wait(2), rand(3C), a.out(4), profile(4), environ(5). If a command
which is a tracked alz"as is executed, and then a command with the
same name is installed in a directory in the search path before the
directory where the original command was found, the shell will
continue to exec the original command. Use the -t option of the
alias command to correct this situation.

If you move the current directory or one above it, pwd may not
give the correct response. Use the cd command with a full path
name to correct this situation.

Some very old shell scripts contain a A as a synonym for the pipe
character I.

- 29 -

LD (1) LD (1)

NAME
ld - link editor for common object files

SYNOPSIS
Id [-e epsym] [-f fill] [-Ix] [-m] [-0 outfile] [-r] [-s] [-t]
[-u sysname] [-x] [-Z] [-L dir] [-M] [-N] [-n] [-z] [-F]
[-V] [-VS num] [-0] [-w] file-names

DESCRIPTION
The ld command combines several object files into one, performs
relocation, resolves external symbols, and supports symbol table
information for symbolic debugging. In the simplest case, the
names of several object programs are given, and ld combines them,
producing an object module that can either be executed or used as
input for a subsequent ld run. The output of ld is left in a.out.
This file is executable if no errors occurred during the load. If any
input file, file-name, is not an object file, ld assumes it is either an
ASCII file containing link editor directives or an archive library.

If any argument is a library, it is searched exactly once at the
point it is encountered in the argument list. Only those routines
defining an unresolved external reference are loaded. The library
(archive) symbol table (see ar(4)) is searched sequentially with as
many passes as are necessary to resolve external references which
can be satisfied by library members. Thus, the ordering of library
members is unimportant.

The following options are recognized by ld.

-e epsym
Set the default entry point address for the output file to
be that of the symbol epsym.

-f fill Set the default fill pattern for "holes" within an output
section as well as initialized bss sections. The argument
fill is a two-byte constant.

-Ix Search a library named libx.a where x is up to nine char­
acters. A library is searched when its name is encoun­
tered, so the placement of a -I is significant. By default,
libraries are located in /lib and /usr /lib. However, if
the shell variable LIBROOT is set, the value of
LIBROOT is prepended to /lib and / usr /lib before
searching the libraries.

-m Produce a map or listing of the input/output sections on
the standard output.

-ooutfile
Produce an output object file by the name outfile. The
name of the default object file is a.out.

-r Retain relocation entries in the output object file. Reloca­
tion entries must be saved if the output file is to become
an input file in a subsequent ld run. The link editor will
not complain about unresolved references, and the output
file will not be executed.

- 1 -

LD (1)

-8

-t

LD (1)

Strip line number entries and symbol table information
from the output object file.

Turn off the warning about multiply-defined symbols that
are not the same size.

-u symname
Enter symname as an undefined symbol in the symbol
table. This is useful for loading entirely from a library,
since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the
first routine.

-x Do not preserve local (non-.global) symbols in the output
symbol table; only enter external and static symbols.
This option saves some space in the output file.

-Z Do not bind anything to address zero. This option will
allow runtime detection of null pointers.

-L dir Change the algorithm of searching for libx.a to look in
dz"r before looking in Jlib.

-M Output a message for each multiply-defined external
definition. However, if the objects being loaded include
debugging information, extraneous output is produced (see
the -g option in cC(l)).

-N Put the data section immediately following the text in the
output file. The result is a plain executable file, indicated
by magic number 0407 in the operating system header.

-n Put the data section at the next segment boundary follow­
ing the text section. The result is a shared text file, indi­
cated by magic number 0410 in the operating system
header.

-z Like -n but permits demand paged execution. This type
of file is indicated by magic number 0413 in the operating
system header.

-F Like -z but takes less disk space and can page faster into
memory. This type is also indicated by magic number
0413 in the operating system header. It is distinguished
by having virtual text and data starting addresses that
are equal to the file offsets of the text and data sections,
modulo 4096. The -F option is on by default.

- V Output a message giving information about the version of
ld being used.

-VS num
Use num as a decimal version number identifying the
a.out file that is produced. The version stamp is stored
in the optional header.

-G Change the symbol name look-up algorithm as follows: if
two names do not initially match, then if one of them is
exactly eight characters, then a match is attempted only
on the first eight characters. The purpose of this is to

- 2-

LD(1)

FILES

LD (1)

allow compatibility between object modules that have
been created with the old C compiler and with the new C
compiler, which allows variable names more than eight
characters long. A warning message is issued in such
cases.

-w If -G is used, do not print warnings about symbols that
partially matched.

/lib/libx.a
/usr /lib/libx.a
a.out
/lib/ifile.0407
/lib/ifile.041O
/lib/ifile.0413
/lib / ifile. 0413-F

libraries
libraries
output file
default -N directive file
default - n directive file
default - z directive file
default - F directive file

SEE ALSO
as(l), cc(l), a.out(4), ar(4), exit(2), end(3C)

CAVEATS
Through its options and input directives, the common link editor
gives users great flexibility; however, people who use the input
directives must assume some added responsibilities. Input direc­
tives should insure the following properties for programs:

C defines a zero pointer as null. A pointer to which zero has
been assigned must not point to any object. To satisfy this,
users must not place any object at virtual address zero in
the data space.

- 3-

LEX (1) LEX (1)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn 1 [file 1 ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of
text.

The input files (standard input default) contain strings and
expressions to be searched for, and C text to be executed when
strings are found.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in
the file is found; then the corresponding program text is executed.
The actual string matched is left in yytext, an external character
array. Matching is done in order of the strings in the file. The
strings may contain square brackets to indicate character classes,
as in [ahx-z] to indicate a, h, x, y, and z; and the operators *,
+, and ? mean respectively any non-negative number of, any
positive number of, and either zero or one occurrences of, the pre­
vious character or character class. The character • is the class of
all ASCII characters except new-line. Parentheses for grouping and
vertical bar for alternation are also supported. The notation
r { d, e} in a rule indicates between d and e instances of regular
expression r. It has higher precedence than I, but lower than *,
?, +, and concatenation. The character A at the beginning of an
expression permits a successful match only immediately after a
new-line, and the character $ at the end of an expression requires
a trailing new-line. The character / in an expression indicates
trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must fol­
low in the input stream. An operator character may be used as an
ordinary symbol if it is within" symbols or preceded by \. Thus
[a-zA-Z]+ matches a string of letters.

Three subroutines defined as macros are expected: inputO to read
a character; unput(c) to replace a character read; and output(c)
to place an output character. They are defined in terms of the
standard streams, but you can override them. The program gen­
erated is named yylexO, and the library contains a mainO which
calls it. The action REJECT on the right side of the rule causes
this match to be rejected and the next suitable match executed;
the function yymoreO accumulates additional characters into the
same yytext; and the function yyless(p) pushes back the portion
of the string matched beginning at p, which should be between
yytext and yytext+yyleng. The macros input and output use files
yyin and yyout to read from and write to, defaulted to stdin
and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes %% it is copied into the external
definition area of the lex.yy.c file. All rules should follow a %%,
as in YACC. Lines preceding %% which begin with a non-blank

- 1 -

LEX (1) LEX (1)

character define the string on the left to be the remainder of the
line; it can be called out later by surrounding it with {}. Note
that curly brackets do not imply parentheses; only string substitu­
tion is done.

EXAMPLE
D
%%
if
[a-z]+
O{D}+
{D}+
"++"
"+"
"1*"

[0-9]

printf("IF statement\n");
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n");
printf("binary op\n");
{ loop:

while (inputO != '*');
switch (inputO)

}

{
case 'I': break;
case '*': unput('*');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy
orYY.

The flags must appear before any files. The flag -r indicates
RATFOR actions, -c indicates C actions and is the default, -t
causes the lex.yy.c program to be written instead to standard
output, -y provides a one-line summary of statistics of the
machine generated, -n will not print out the - summary. Multi­
ple files are treated as a single file. If no files are specified, stan­
dard input is used.

Certain table sizes for the resulting finite state machine can be set
in the definitions section:

%p n number of positions is n (default 2000)

%n n number of states is n (500)

%t n number of parse tree nodes is n (1000)

%8. n number of transitions is n (3000)

The use of one or more of the above automatically implies the -y

option, unless the -n option is used.

SEE ALSO
yacc(l).
LEX-Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

BUGS
The - r option is not yet fully operational.

- 2 -

LINE (1)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

LINE (1)

Lz'ne copies one line (up to a new-line) from the standard input
and writes it on the standard output. It returns an exit code of 1
on EOF and always prints at least a new-line. It is often used
within shell files to read from the user's terminal.

SEE ALSO
sh(l), read(2).

- 1 -

LINT (1) LINT (1)

NAME
lint - a C program checker

SYNOPSIS
lint [-abhlnpuvx 1 file ...

DESCRIPTION
Lz"nt attempts to detect features of the C program files which are
likely to be bugs, non-portable, or wasteful. It also checks type
usage more strictly than the compilers. Among the things which
are currently detected are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and
logical expressions whose value is constant. Moreover, the usage
of functions is checked to find functions which return values in
some places and not in others, functions called with varying
numbers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are
checked for mutual compatibility. By default, lz'nt uses function
definitions from the standard lint library llib-lc.ln; function
definitions from the portable lint library llib-port.ln are used
when lz"nt is invoked with the -p option.

Any number of lz"nt options may be used, in any order. The fol­
lowing options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to
variables that are not long.

-b Suppress complaints about break statements that cannot
be reached. (Programs produced by lex or yaee will often
result in a large number of such complaints.)

-h Do not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

-u Suppress complaints about functions and external vari­
ables used and not defined, or defined and not used. (This
option is suitable for running lz"nt on a subset of files of a
larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declara-
tions but never used.

The following arguments alter lz"nt's behavior:

-Ix Include additional lint library llib-Ix.ln. You can include
a lint version of the math library llib-lm.ln by inserting
-1m on the command line. This argument does not
suppress the default use of llib-lc.In. This option can be
used to keep local lint libraries and is useful in the
development of multi-file projects.

-n Do not check compatibility against either the standard or
the portable lint library.

-p Attempt to check portability to other dialects (IBM and
GCOS) of C.

- 1 -

LINT (1) LINT (1)

FILES

The -D, -U, and -I options of cc(1) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior of l£nt:

I*NOTREACHED*I
at appropriate points stops comments about unreachable
code.

I*VARARGSn*1
suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be o.

I*ARGSUSED*I
turns on the -v option for the next function.

I * LINTLIBRARY * I
at the beginning of a file shuts off complaints about
unused functions in this file.

Lz"nt produces its first output on a per source file basis. Com­
plaints regarding included files are collected and printed after all
source files have been processed. Finally, information gathered
from all input files is collected and checked for consistency. At
this point, if it is not clear whether a complaint stems from a
given source file or from one of its included files, the source file
name will be printed followed by a question mark.

lusr llib/lint[12]
lusr llib/llib-lc.ln

lusr llib/llib-port.ln

lusr lli b Illi b-Im.In

programs
declarations for standard functions (binary
format; source is in /usr/lib/llib-lc)
declarations for portable functions (binary
format; source is in / usr /lib /llib-port)
declarations for standard math functions
(binary format; source is in /usr/lib/llib-
1m)

lusr I tmp I * lint*

SEE ALSO

tern porari es

BUGS

cc(1).

EXit(2) and other functions which do not return are not under­
stood; this causes various lies.

- 2 -

LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(l)

Logname returns the contents of the environment variable $LOG­
NAME, which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
en v(1), login(1M), lognam e(3X), env iron(5).

- 1 -

LaRDER (1) LORDER(l)

NAME
larder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar(1)).
The standard output is a list of pairs of object file names, meaning
that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(1) to find an
ordering of a library suitable for one-pass access by ld(1). Note
that the link editor ld(1) is capable of mUltiple passes over an
archive in the portable archive format (see ar(4)) and does not
require that lorder(1) be used when building an archive. The
usage of the lorder(1) command may, however, allow for a slightly
more efficient access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar cr library 'larder *.0 I tsort'

*symref, *symdef temporary files

SEE ALSO

BUGS

ar(1), Id(1), tsort(1), ar(4).

Object files whose names do not end with .0, even when contained
in library archives, are overlooked. Their global symbols and
references are attributed to some other file.

- 1 -

LP (1) LP (1)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
lp [-c] [-d dest] [-m] [-n number] [-0 option] [-r] [-ttitle]
[-w] [-x] files

cancel [ids] [printers] [-a name]

DESCRIPTION
Lp arranges for the named files and associated information (collec­
tively called a request) to be printed by a line printer. If no file
names are mentioned, the standard input is assumed. The file
name - stands for the standard input and may be supplied on the
command line in conjunction with named files. The order in
which files appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the
standard output. This id can be used later to cancel (see cancel)
or find the status (see lpstat(1)) of the request.

The following options to lp may appear in any order and may be
intermixed with file names:

-c Make copies of the files to be printed immediately
when lp is invoked. Normally, files will not be
copied, but will be linked whenever possible. If the
-c option is not given, then the user should be care­
ful not to remove any of the files before the request
has been printed in its entirety. It should also be
noted that in the absence of the -c option, any
changes made to the named files after the request is
made but before it is printed will be reflected in the
printed output.

-ddest Choose dest as the printer or class of printers that is
to do the printing. If dest is a printer, then the
request will be printed only on that specific printer.
If dest is followed by _R, the request is printed in
raw mode (no post-processing, no CR-LF translation,
high-order bits are passed through unchanged). If
dest is a class of printers, then the request will be
printed on the first available printer that is a member
of the class. Under certain conditions (printer unavai­
lability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(lM) and
lpstat(1)). By default, dest is taken from the environ­
ment variable LPDEST (if it is set). Otherwise, a
default destination (if one exists) for the computer
system is used. Destination names vary between sys­
tems (see lpstat(l)).

-m Send mail (see mail(1)) after the files have been
printed. By default, no mail is sent upon normal
completion of the print request.

-nnumber Print number copies (default of 1) of the output.

- 1 -

LP(t) LP(t)

FILES

-ooption Specify printer-dependent or class-dependent options.
Several such options may be collected by specifying
the -0 keyletter more than once. For more informa­
tion about what is valid for opt£ons, see Models in
lpadmin(lM).

-r Remove file after printing.

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the files
have been printed. If the user is not logged in, then
mail will be sent instead.

-x Display error message if print job is not sucessful.
Display id if print job is successful. Note that lp(l) is
silent by default.

-aname Assign name to print job. Name will display in name
field by lpqueue.

Cancel cancels line printer requests that were made by the lp(l)
command. The command line arguments may be either request
ids (as returned by lp(l)) or printer names (for a complete list,
use lpstat(1)). Specifying a request z"d cancels the associated
request even if it is currently printing. Specifying a printer name
cancels the request which is currently printing on that printer. In
either case, the cancellation of a request that is currently printing
frees the printer to print its next available request.

lusr I spooi/ip I *
SEE ALSO

BUGS

enable(1), lpstat(l), mail(1).
accept(lM), Ipadmin(lM), Ipsched(1M) in the UNIX System
Administrator's Manual.

The -r, -w, and -a options are not available for Version 3.5

- 2 -

LPSTAT(l) LPSTAT (1)

NAME
lpstat - print LP status information

SYNOPSIS
lpstat [options 1

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line
printer system.

If no optz"ons are given, then lpstat prints the status of all requests
made to lp(1) by the user. Any arguments that are not optt"ons
are assumed to be request ids (as returned by lp). Lpstat prints
the status of such requests. Optz"ons may appear in any order and
may be repeated and intermixed with other arguments. Some of
the key letters below may be followed by an optional lz"st that can
be in one of two forms: a list of items separated from one another
by a comma, or a list of items enclosed in double quotes and
separated from one another by a comma and/or one or more
spaces. For example:

-u"userl, user2, user3"

The omission of a list following such keyletters causes all informa­
tion relevant to the keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[list 1 Print acceptance status (with respect to lp) of destina­
tions for requests. Lz"st is a list of intermixed printer
names and class names.

-c[list 1 Print class names and their members. List is a list of
class names.

-d Print the system default destination for lp.

-or list 1 Print the status of output requests. List is a list of
intermixed printer names, class names, and request a·ds.

-p[la"st 1 Print the status of printers. Lz"st is a list of printer
names.

-r

-s

-t

-u[list 1

-v[list 1

Print the status of the LP request scheduler

Print a status summary, including the status of the
line printer scheduler, the system default destination, a
list of class names and their members, and a list of
printers and their associated devices.

Print all status information.

Print status of output requests for users. List is a list
of login names.

Print the names of printers and the pathnames of the
devices associated with them. List is a list of printer
names.

/usr /spool/lp/*

- 1 -

LPSTAT(1) LPSTAT (1)

SEE ALSO
enable(1), lp(l).

- 2 -

LS(I) LS(I)

NAME
Is - list contents of directory

SYNOPSIS
Is [-abcdfgilmqrstuxlCFR 1 name ...

DESCRIPTION
For each directory argument, [s lists the contents of the directory;
for each file argument, [s repeats its name and any other informa­
tion requested. The output is sorted alphabetically by default.
When no argument is given, the current directory is listed. When
several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and
their contents.

There are three major listing formats. The format chosen depends
on whether the output is going to a teletype, and may also be con­
trolled by option ft.ags. The default format for a teletype is to list
the contents of directories in multi-column format, with the
entries sorted down the columns. (Files which are not the con­
tents of a directory being interpreted are always sorted across the
page rather than down the page in columns. This is because the
individual file names may be arbitrarily long.) If the standard out­
put is not a teletype, the default format is to list one entry per
line. Finally, there is a stream output format in which files are
listed across the page, separated by',' characters. The -m ft.ag
enables this format.

There are an unbelievable number of options:

-I List in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each
file. (See below.) If the file is a special file the size field
will instead contain the major and minor device numbers.

-t Sort by time modified (latest first) instead of by name, as
is normal.

-a List all entries; usually'.' and ' •• ' are suppressed.

-8 Give size in blocks, including indirect blocks, for each
entry.

-d If argument is a directory, list only its name, not its con­
tents (mostly used with -I to get status on directory).

-r Reverse the order of sort to get reverse alphabetic or old­
est first as appropriate.

-u Use time of last access instead of last modification for
sorting (-t) or printing (-I).

-c Use time of last change of file status for sorting or print­
ing.

-i Print i-number in first column of the report for each file
listed.

- 1 -

LS(I)

-f

-g

-m

-1

-c
-q

-b

-x

-F

LS(I)

Force each argument to be interpreted as a directory and
list the name found in each slot. This option turns off -I,
-t, -8, and -r, and turns on -a; the order is the order in
which entries appear in the directory.

Give group ID instead of owner ID in long listing.

Force stream output format

Force one entry per line output format, e.g. to a teletype

Force multi-column output, e.g. to a file or a pipe

Force printing of non-graphic characters in file names as
the character '?'; this normally happens only if the output
device is a teletype

Force printing of non-graphic characters to be in the \ddd
notation, in octal.

Force columnar printing to be sorted across rather than
down the page; this is the default if the last character of
the name the program is invoked with is an 'x'.

Cause directories to be marked with a trailing' /' and exe­
cutable files to be marked with a trailing '*'; this is the
default if the last character of the name the program is
invoked with is a 'f'.

-R Recursively list subdirectories encountered.

The mode printed under the -I option contains 11 characters
which are interpreted as follows: the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
m if the entry is a mUltiplexor-type character special file;

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to owner permissions; the next to per­
missions to others in the same user-group; and the last to all oth­
ers. Within each set the three characters indicate permission
respectively to read, to write, or to execute the file as a program.
For a directory, 'execute' permission is interpreted to mean per­
mission to search the directory for a specified file. The permis­
sions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;
8 if the file is a special (super-user only) file;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the user-execute permission character
is given as 8 if the file has set-user-ID mode.

The last character of the mode (normally 'x' or '-') is t if the 1000
bit of the mode is on. See chmod(l) for the meaning of this mode.

- 2 -

LS(l)

FILES

LS(l)

The indications of set-!D and 1000 bit of the mode are capitalized
(8 and T respectively) if the corresponding execute permission is
not set.

When the sizes of the files in a directory are listed, a total count
of blocks, including indirect blocks is printed.

/etc/paBswd to get user !D's for 'Is -1'.
/etc/group to get group !D's for 'Is -g'.

SEE ALSO
chmod(l).

BUGS
Newline and tab are considered printing characters in file names.

The output device is aBsumed to be 80 columns wide.

The option setting based on whether the output is a teletype is
undesirable as "Is -s" is much different than "Is -s Ilpr". On the
other hand, not doing this setting would make old shell scripts
which used i8 almost certain losers.

Column widths choices are poor for terminals which can tab.

- 3-

M4 (1) M4(1)

NAME
m 4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C,
and other languages. Each of the argument files is processed in
order; if there are no files, or if a file name is -, the standard
input is read. The processed text is written on the standard out­
put.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the out­
put is unbuffered. Using this mode requires a special state
of mind.

-8 Enable line sync output for the C preprocessor (#line
...)

-Bt'nt Change the size of the push-back and argument collection
buffers from the default of 4,096.

-Hz"nt Change the size of the symbol table hash array from the
default of 199. The size should be prime.

-Sz·nt Change the size of the call stack from the default of 100
slots. Macros take three slots, and non-macro arguments
take one.

- Tz"nt Change the size of the token buffer from the default of
512 bytes.

To be effective, these flags must appear before any file names and
before any -D or -U flags:

-Dname [=val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the
name of a defined macro is not followed by a (, it is deemed to be
a call of that macro with no arguments. Potential macro names
consist of alphabetic letters, digits, and underscore _, where the
first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while
collecting arguments. Left and right single quotes are used to
quote strings. The value of a quoted string is the string stripped
of the quotes.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. If fewer arguments are
supplied than are in the macro definition, the trailing arguments
are taken to be null. Macro evaluation proceeds normally during

- 1 -

M4(1) M4(1)

the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested
call are as effective as those in the original input text. After argu­
ment collection, the value of the macro is pushed back onto the
input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

the second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is
a digit, is replaced by the n-th argument. Argument
o is the name of the macro; missing arguments are
replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all
the arguments separated by commas; $@ is like $*,
but each argument is quoted (with the current
quotes).

removes the definition of the macro named in its
argument.

returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), expos­
ing the previous one if any.

if the first argument is defined, the value is the
second argument, otherWise the third. If there is no
third argument, the value is null. The word unt"x is
predefined on UNIX versions of m4.
returns all but its first argument. The other argu­
ments are quoted and pushed back with commas in
between. The quoting nullifies the effect of the extra
scan that will subsequently be performed.

change quote symbols to the first and second argu­
ments. The symbols may be up to five characters
long. Changequote without arguments restores the
original values (i.e., ' ,).

change left and right comment markers from the
default # and new-line. With no arguments, the
comment mechanism is effectively disabled. With
one argument, the left marker becomes the argument
and the right marker becomes new-line. With two
arguments, both markers are affected. Comment
markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0.9.
The final output is the concatenation of the streams
in numerical order; initially stream 0 is the current
stream. The dt"vert macro changes the current

- 2 -

M4(1)

undivert

divnum

dnl

ifelse

incr

decr

eval

len

index

substr

translit

include

sinclude

syscmd

M4(1)

output stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is dis­
carded.

causes immediate output of text from diversions
named as arguments, or all diversions if no argu­
ment. Text may be undiverted into another diver­
sion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including
the next new-line.

has three or more arguments. If the first argument
is the same string as the second, then the value is
the third argument. If not, and if there are more
than four arguments, the process is repeated with
arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1.
The value of the argument is calculated by interpret­
ing an initial digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, -, *,
/, %, .. (exponentiation), bitwise &, I , ", and -; rela­
tionals; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the
radix for the result; the default is 10. The third
argument may be used to specify the minimum
number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the
second argument begins (zero origin), or -1 if the
second argument does not occur.

returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to
be large enough to extend to the end of the first
string.

transliterates the characters in its first argument
from the set given by the second argument to the set
given by the third. No abbreviations are permitted.

returns the contents of the file named in the argu­
ment.

is identical to include, except that it says nothing if
the file is inaccessible.

executes the UNIX command given in the first argu­
ment. No value is returned.

- 3-

M4(1)

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

M4(1)

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the
curren t process ID.

causes immediate exit from m4. Argument 1, if
given, is the exit code; the default is O.

argument 1 will be pushed back at final EOF; exam­
ple: m4wrap(' cleanup() /)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named
items, or for all if no arguments are given.

with no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

turns off trace globally and for any macros specified.
Macros specifically traced by traceon can be
untraced only by specific calls to traceoff.

SEE ALSO
cc(I), cpp(1). The M4 Macro Processor by B. W. Kernighan and
D. M. Ritchie.

- 4-

MAIL (1) MAIL (1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-epqr 1 [-f file 1

mail [- t 1 persons

rmail [-t 1 persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message,
in last-in, first-out order. For each message, the user is prompted
with a 7, and a line is read from the standard input to determine
the disposition of the message:

< new-line> Go on to next message.

+ Same as < new-line> .

d

p

Delete message and go on to next message.

Print message again.

Go back to previous message.

s [files 1 Save message in the named files (mbox is
default).

w [files 1 Save message, without its header, in the named
files (mbox is default).

m [persons 1 Mail the message to the named persons (your­
self is default).

q Put undeleted mail back in the mailfile and
stop.

EOT (control-d) Same as q.

x Put all mail back in the maz'lfile unchanged
and stop.

! command Escape to the shell to do command.

* Print a command summary.

The optional arguments alter the printing of the mail:

-e causes mail not to be printed. An exit value of 0 is
returned if the user has mail; otherwise, an exit value of 1
is returned.

-p causes all mail to be printed without prompting for dispo­
sition.

-q causes mail to terminate after interrupts. Normally an
interrupt only causes the termination of the message being
printed.

-r causes messages to be printed in first-in, first-out order.

-ffile causes mail to use file (e.g., mbox) instead of the default
mailfile.

When persons are named, mail takes the standard input up to an
end-of-file (or up to a line consisting of just a .) and adds it to

- 1 -

MAIL (1) MAIL(I)

FILES

each person's mailjile. The message is preceded by the sender's
name and a postmark. Lines that look like postmarks in the mes­
sage, (i.e., "From ... J!) are preceded with a >. The -t option
causes the message to be preceded by all persons the mail is sent
to. A person is usually a user name recognized by login(1M). If a
person being sent mail is not recognized, or if mail is interrupted
during input, the file dea.d.letter will be saved to allow editing
and resending.

To denote a recipient on a remote system, prefix person by the
system name and exclamation mark (see uucp(lC)). Everything
after the first exclamation mark in persons is interpreted by the
remote system. In particular, if persons contains additional excla­
mation marks, it can denote a sequence of machines through
which the message is to be sent on the way to its ultimate destina­
tion. For example, specifying a!b!cde as a recipient's name
causes the message to be sent to user b!cde on system a. System
a will interpret that destination as a request to send the message
to user cde on system b. This might be useful, for instance, if the
sending system can access system a. but not system b, and system
a has access to system b.

The mailjile may be manipulated in two ways to alter the func­
tion of maz'l. The other permissions of the file may be read-write,
read-only, or neither read nor write to allow different levels of
privacy. If changed to other than the default, the file will be
preserved even when empty to perpetuate the desired permissions.
The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailjile to be
forwarded to person. This is especially useful to forward all of a
person's mail to one machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp (IC) uses rmail as a
security precaution.

When a user logs in, the presence of mail, if any, is indicated.
Also, notification is made if new mail arrives while using mazl

/etc/passwd
/usr /mail/ user
$HOME/mbox
$ MAIL
/tmp/ma*
/usr /mail/*.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mailjile
saved mail
variable containing path name of maz"ljile
tern porary til e
lock for mail directory
unmailable text

SEE ALSO

BUGS

login(lM), uucp(lC), write(l),
UNIX PC Electronic Mail User's Guide.

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing
may be forced by typing a p.

- 2 -

MAKE (1) MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
ma.ke [-f makefile] [-p] [-i] [-k] [-8] [-r] [-0] [-b] [-e]
[-m] [-t] [-d] [-q] [names]

DESCRIPTION
The following is a brief description of all options and some special
names:

-f makefile Description file name. Makefile is assumed to be
the name of a description file. A file name of -
denotes the standard input. The contents of
makefile override the built-in rules if they are
present.

-p Print out the complete set of macro definitions and
target descriptions.

-i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
.IGNORE appears in the description file.

-k Abandon work on the current entry, but continue
on other branches that do not depend on that
entry.

-8 Silent mode. Do not print command lines before
executing. This mode is also entered if the fake
target name .SILENT a.ppears in the description
file.

-r Do not use the built-in rules.

-0 No execute mode. Print commands, but do not
execute them. Even lines beginning with an @ are
printed.

- b Compatibility mode for old makefiles.

-e Environment variables override assignments within
makefiles.

-m Print a memory map showing text, data, and
stack. This option is a no-operation on systems
without the getu system call.

-t Touch the target files (causing them to be up-to­
date) rather than issue the usual commands.

-d Debug mode. Print out detailed information on
files and times examined.

-q Question. The make command returns a zero or
non-zero status code depending on whether the tar­
get file is or is not up-to-date .

• DEFAULT If a file must he made but there are no explicit
commands or relevant built-in rules, the commands
associated with the name .DEF AULT are used if it
exists.

- 1 -

MAKE (1) MAKE (1)

.PRECIOUS Dependents of this target will not be removed
when quit or interrupt are hit .

• SILENT Same effect as the -8 option .

• IGNORE Same effect as the -i option.

Make executes commands in makefile to update one or more tar­
get names. Name is typically a program. If no -f option is
present, m8okefile, M8okefile, 8.m8okefile, and 8.M8okefile are
tried in order. If makefile is -, the standard input is taken. More
than one - makefile argument pair may appear.

Make updates a target only if it depends on files that are newer
than the target. All prerequisite files of a target are added recur­
sively to the list of targets. Missing files are deemed to be out of
date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, non-null list of tar­
gets, then a :, then a (possibly nUll) list of prerequisite files or
dependencies. Text following a ; and all following lines that begin
with a tab are shell commands to be executed to update the tar­
get. The first line that does not begin with a tab or # begins a
new dependency or macro definition. Shell commands may be
continued across lines with the <backslash> <new-line>
sequence. Everything printed by make (except the initial tab) is
passed directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files 80.0

and h.o, and that they in turn depend on their corresponding
source files (8o.c and h.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell.
The first one or two characters in a command can be the follow­
ing: -, @, -@, or @-. If @ is present, printing of the command is
suppressed. If - is present, make ignores an error. A line is
printed when it is executed unless the -8 option is present, or the
entry .SILENT: is in makefile, or unless the initial character
sequence contains a @. The -n option specifies printing without
execution; however, if the command line has the string $(MAKE)
in it, the line is always executed (see discussion of the

- 2 -

MAKE (1) MAKE(I)

MAKEFLAGS macro under Environment). The -t (touch)
option updates the modified date of a file without executing any
commands.

Commands returning non-zero status normally terminate make. If
the -i option is present, or the entry .IGNORE: appears in
makefile, or the initial character sequence of the command con­
tains -. the error is ignored. If the -k option is present, work is
abandoned on the current entry, but continues on other branches
that do not depend on that entry.

The - b option allows old makefiles (those written for the old ver­
sion of make) to run without errors. The difference between the
old version of make and this version is that this version requires
all dependency lines to have a (possibly null or implicit) command
associated with them. The previous version of make assumed if
no command was specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
is a dependency of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to
be macro definitions and processed as such. The environment
variables are processed before any makefile and after the internal
rules; thus, macro assignments in a makefile override environment
variables. The -e option causes the environment to override the
macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except -I, -p, and -d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current
options into it, and passes it on to invocations of commands.
Thus, MAKEFLAGS always contains the current input options.
This proves very useful for "super-makes". In tact, as noted
above, when the -n option is used, the command $(MAKE) is
executed anyway; hence, one can perform a make -n recursively
on a whole software system to see w hat would have been executed.
This is because the -n is put in MAKEFLAGS and passed to
further invocations of $(MAKE). This is one way of debugging all
of the makefiles for a software project without actually doing any­
thing.

Macros
Entries of the form stringl = string2 are macro definitions.
String2 is defined as all characters up to a comment character or
an unescaped newline. Subsequent appearances of
$(stringl [:substl =[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used
and there is no substitute sequence. The optional :substl =subst2
is a substitute sequence. If it is specified, all non-overlapping
occurrences of substl in the named macro are replaced by subst2.

- 3-

MAKE(l) MAKE(l)

Strings (for the purposes of this type of substitution) are delimited
by blanks, tabs, new-line characters, and beginnings of lines. An
example of the use of the substitute sequence is shown under
Libraries.

In ternal Macros
There are five internally maintained macros which are useful for
writing rules for building targets.

$* The macro $* stands for the file name part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependen­
cies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the "manufactured" dependent file
name). Thus, in the .c.o rule, the $< macro would evaluate
to the .c file. An example for making optimized .0 files from
.c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$7 The $1 macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an
archive library member of the form lib(file.o). In this case,
$@ evaluates to lib and $% evaluates to the library
member, fiie.o.

Four of the five macros can have alternative forms. When an
upper case D or F is appended to any of the four macros the
meaning is changed to "directory part" for D and "file part" for
F. Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $7. The reasons for this are
debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable
prerequisites such as .c, .s, etc. If no update commands for such a
file appear in makefile, and if an inferable prerequisite exists, that
prerequisite is compiled to make the target. In this case, make
has inference rules which allow building files from other files by
examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

- 4 -

MAKE (l) MAKE(l)

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.O .s-.o .y.o .y-.o .1.0 r.o

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file
rules.c for the make program. These rules can be locally
modified. To print out the rules compiled into the make on any
machine in a form suitable for recompilation, the following com­
mand is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which
printf(3S) prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(4)).
Thus, the rule .c -.0 would transform an sees C source file into
an object file (.0). Because the s. of the sees files is a prefix it is
incompatible with make's suffix point-of-view. Hence, the tilde is
a way of changing any file reference into an sees file reference.

A rule with only one suffix (i.e .• c:) is the definition of how to
build x from x .c. In effect, the other suffix is null. This is useful
for building targets from only one source file (e.g., shell pro­
cedures, simple C programs).

Additional suffixes are given as the dependency list for .SUF­
FIXES. Order is significant; the first possible name for which
both a file and a rule exist is inferred as a prerequisite. The
default list is:

.SUFFIXES: .0 .c .y .I .s

Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFFIXES: with no dependen­
cies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit
the inclusion of optional matter in any resulting commands. For
example, CFLAGS, LFLAGS, and YFLAGS are used for compiler
options to cC(l), lex(l), and yacc(l) respectively. Again, the pre­
vious method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to
create a file with suffix .0 from a file with suffix .c is specified as
an entry with .c.o: as the target and no dependents. Shell com­
mands associated with the target define the rule for making a .0

file from a .c file. Any target that has no slashes in it and starts
with a dot is identified as a rule and not a true target.

- 5 -

MAKE (1) MAKE(I)

Libraries
If a target or dependency name contains parenthesis, it is assumed
to be an archive library, the string within parenthesis referring to
a member within the library. Thus lib {file.o) and $(LIB)(file.o)
both refer to an archive library which contains file.o. (This
assumes the LIB macro has been previously defined.) The expres­
sion $(LIB)(file1.o file2.0) is not legal. Rules pertaining to
archive libraries have the form .XX.a. where the XX is the suffix
from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the XX to be
different from the suffix of the archive member. Thus, one cannot
have lib{file.o) depend upon file.o explicitly. The most common
use of the archive interface follows. Here, we assume the source
files are all C type source:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a. rule listed above is built into make and is
unnecessary in this example. A more interesting, but more limited
example of an archive library maintenance construction follows:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The
$1 list is defined to be the set of object file names (inside lib)
whose C source files are out of date. The substitution mode
translates the .0 to .c. (Unfortunately, one cannot as yet
transform to .c -; however, this may become possible in the
future.) Note also, the disabling of the .c.a.: rule, which would
have created each object file, one by one. This particular con­
struct speeds up archive library maintenance considerably. This
type of construct becomes very cumbersome if the archive library
contains a mix of assembly programs and C programs.

EXAMPLE
The following makefile segment demonstrates a feature that allows
makefiles to include other makefile segments:

#Makefile to build world
include $(~INC) Makepre.h

foo: fooa.o
$(cc)

foob.o
fooa.o foob.o -0 foo

include $(~INC)/Makepost.h

- 6-

MAKE(l) MAKE(l)

FILES

In the above example, the environment variable MAKEINC will
be expanded and used as the directory where the file Makepre.h
and Makepost.h exist.

[MmJakefile and s.[MmJakefile

SEE ALSO
sh(l).

BUGS

Make-A Program for Maintaining Computer Programs by S. I.
Feldman.
An Augmented Version of Make by E. G. Bradford.

Some commands return non-zero status inappropriately; use -i to
overcome the difficulty. Commands that are directly executed by
the shell, notably cd(l), are ineffectual across new-lines in make.
The syntax (lib(file1.o file2.o file3.o) is illegal. You cannot
build lib(file.o) from file.o. The macro $(a.:.o=.c -) doesn't
work.

- 7-

MAKEKEY(l) (Domestic Version Only) MAKEKEY(I)

NAME
makekey - generate encryption key

SYNOPSIS
/ usr /libl makekey

DESCRIPTION
This feature is available only in the domestic (U.S.) version of the
UNIX PC software. Makekey improves the usefulness of encryp­
tion schemes depending on a key by increasing the amount of time
required to search the key space. It reads 10 bytes from its stan­
dard input, and writes 13 bytes on its standard output. The out­
put depends on the input in a way intended to be difficult to com­
pute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the £nput key) can be arbitrary ASCII
characters. The last two (the salt) are best chosen from the set of
digits, ., I, and upper- and lower-case letters. The salt characters
are repeated as the first two characters of the output. The
remaining 11 output characters are chosen from the same set as
the salt and constitute the output key.

The transformation performed is essentially the following: the salt
is used to select one of 4,096 cryptographic machines all based on
the National Bureau of Standards DES algorithm, but broken in
4,096 different ways. Using the z"nput key as key, a constant string
is fed into the machine and recirculated a number of times. The
64 bits that come out are distributed into the 66 output key bits
in the result.

Makekey is intended for programs that perform encryption (e.g.,
ed(l) and crypt(I)). Usually, its input and output will be pipes.

SEE ALSO
crypt(l), ed(I), passwd(4).

- 1 -

MESG (1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n 1 [y 1

DESCRIPTION

MESG (1)

Mesg with argument n forbids messages via write(1) by revoking
non-user write permission on the user's terminal. Mesg with argu­
ment y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MESSAGE (1) (AT&T UNIX PC only) MESSAGE (1)

NAME
message - display error and help messages

SYNOPSIS
message [-u] [-c] [-i] text

DESCRIPTION
Message allows the shell programmer access to the message(3T)
subroutine. Text is a text string with the standard special charac­
ter conventions: \n for newline, etc.

The possible options are:

-u Use the current window for the messages-resizes it to fit.

-c Create a confirmation message (see MT_CONFIRM in
message(3T)).

-i Create a pop-up message-press any key to return to the
caller (see MT_POPUP in message (3T)).

If no options are set, message(1) will generate an error message
(see MT_ERROR in message(3T)).

EXAMPLES
The following example prints a confirmation message using the
current window:

SEE ALSO

message -uc "Do you wish to continue"
if ["$?" != "0"]
then

exit
fi

message(3T), shform(1), tam(3T).

- 1 -

MKDIR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(l)

Mkdz"r creates specified directories in mode 777 (possibly altered
by umask(l)). Standard entries, ., for the directory itself, and •• ,
for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh(l), rm(l), umask(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made;
otherwise, it prints a diagnostic and returns non-zero.

- 1 -

MM(l)

NAME

MM(l)

mm, osdd, checkmm - print/check documents formatted with the
MM macros

SYNOPSIS
mm [options I [files I
osdd [options I [files I
checkmm [files I

DESCRIPTION
Mm can be used to type out documents using nroff and the MM
text-formatting macro package. It has options to specify prepro­
cessing by tbl(l) and/or neqn (see eqn(l)) and postprocessing by
various terminal-oriented output filters. The proper pipelines and
the required arguments and flags for nroff and MM are generated,
depending on the options selected.

Osdd is equivalent to the command mm -mosd.

Options for mm are given below. Any other arguments or flags
(e.g., -re3) are passed to nroff or to MM, as appropriate. Such
options can occur in any order, but they must appear before the
files arguments. If no arguments are given, mm prints a list of its
options.

-Tterm Specifies the type of output terminal; for a list of recog­
nized values for term, type help term2. If this option
is not· used, mm will use the value of the shell variable
$TERM from the environment (see profile (4) and
environ(S)) as the value of term, if $TERM is set; oth­
erwise, mm will use 450 as the value of term. If
several terminal types are specified, the last one takes
precedence.

-12 Indicates that the document is to be produced in 12-
pitch. May be used when $TERM is set to one of 300,
300s, 450, and 1620. (The pitch switch on the DASI
300 and 300s terminals must be manually set to 12 if
this option is used.)

-c Causes mm to invoke col(1); note that col(l) is invoked
automatically by mm unless term is one of 300, 300s,
450, 37, 4000a, 382, 4014, tek, 1620, and X.

-e Causes mm to invoke neqn; also causes neqn to read
the /usr/pub/eqnchar file (see eqnchar(S)).

-t Causes mm to invoke tbl(I).
-E Invokes the -e option of nroff.
-y Causes mm to use the non-compacted version of the

macros (see mm(S)).

As an example (assuming that the shell variable $TERM is set in
the environment to 450), the two command lines below are
equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* I nroff -cm -T4S0-12 -h -rC3

- 1 -

MM(I)

HINTS

MM(I)

Mm reads the standard input when - is specified instead of any
file names. (Mentioning other files together with - leads to disas­
ter.) This option allows mm to be used as a filter; e.g.:

cat dws I mm -

Checkmm is a program for checking the contents of the named
files for errors in the use of the Memorandum Macros, missing or
unbalanced neqn delimiters, and .EQ/ .EN pairs. Note: The user
need not use the checkeq program (see eqn(l)). Appropriate mes­
sages are produced. The program skips all directories, and if no
file name is given, standard input is read.

1. Mm invokes nroff with the -h flag. With this flag, nroff
assumes that the terminal has tabs set every 8 character
positions.

2. Use the -olist option of nroff to specify ranges of pages
to be output. Note, however, that mm, if invoked with
one or more of the -e, -t, and - options, together with
the -olist option of nroff may cause a harmless "broken
pipe n diagnostic if the last page of the document is not
specified in list.

3. If you use the -8 option of nroff (to stop between pages of
output), use line-feed (rather than return or new-line) to
restart the output. The -8 option of nroff does not work
with the -c option of mm, or if mm automatically
invokes col(l) (see -c option above).

4. If you lie to mm about the kind of terminal its output will
be printed on, you'll get (often subtle) garbage; however,
if you are redirecting output into a file, use the - T37
option, and then use the appropriate terminal filter when
you actually print that file.

SEE ALSO
col(I), cW(I), env(l), eqn(I), greek(l), nroff(I), tbl(I), profile(4),
mm(S), term(S).
UNIX System Document Process£ng Gu£de.

DIAGNOSTICS
mm "mm: no input file n if none of the arguments IS a

readable file and mm is not used as a filter.
checkmm "Cannot open filename n if file(s) is unreadable. The

remaining output of the program is diagnostic of the
source file.

- 2 -

MMT(1) MMT(1)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
mmt [options] [files]

mvt [options] [files]

DESCRIPTION

HINT

These two commands are very similar to mm(1), except that they
both typeset their input via troff (not included on the UNIX PC),
as opposed to formatting it via nroff; mmt uses the MM macro
package, while mvt uses the Macro Package for View Graphs and
Slides. These two commands have options to specify preprocess­
ing by tbL(I) and/or eqn(I). The proper pipelines and the
required arguments and flags for troff and for the macro packages
are generated, depending on the options selected.

Options are given below. Any other arguments or flags (e.g.,
-rC3) are passed to troff or to the macro package, as appropriate.
Such options can occur in any order, but they must appear before
the fiLes arguments. If no arguments are given, these commands
print a list of their options.

-e

-t
-Tst
-Tvp

-T4014

-Ttek
-3

-y

Causes these commands to invoke eqn(l); also causes
eqn to read the /usr/pub/eqnchar file (see
eqnchar(5)).
Causes these commands to invoke tbL(I).
Directs the output to the MH STARE facility.
Directs the output to a Versatec printer; this option is
not available at all UNIX sites.
Directs the output to a Tektronix 4014 terminal via
the tc(l) filter.
Same as -T4014.
Invokes the -3 option of troff.
Causes mmt to use the non-compacted version of the
macros (see mm(5)). No effect for mvt.

These commands read the standard input when - is specified
instead of any file names.

Mvt is just a link to mmt.

Use the -oList option of troff to specify ranges of pages to be out­
put. Note, however, that these commands, if invoked with one or
more of the -e, --t, and - options, together with the -oLz"st
option of troff may cause a harmless "broken pipe" diagnostic if
the . last page of the document is not specified in List.

SEE ALSO
env(1), eqn(I), mm(I), tbl(1), tc(I), profile(4), environ(5), mm(5).
UNIX System Document Processing Guide.

DIAGNOSTICS
"m[mv]t: no input file" if none of the arguments is a readable file
and the command is not used as a filter.

- 1 -

MORE(l) MORE(l)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-cdfl8U 1 [- n 1 [+linenumb er 1 [+ / pattern 1 [
name 1
page more options

DESCRIPTION
More is a filter which allows examination of a continuous text one
screen full (or window full) at a time on a soft-copy terminal. It
normally pauses after each screen full, printing --More-- at the
bottom of the screen. If the user then types a carriage return, one
more line is displayed. If the user hits a space, another screen full
is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which
more will use instead of the default.

-c More will draw each page by beginning at the top of the
screen and erasing each line just before it draws on it.
This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the
terminal does not have the ability to clear to the end of a
line.

-d More will prompt the user with the message Hit space to
continue, Rubout to abort at the end of each screen full.
This is useful if more is being used as a filter in some set­
ting, such as a class, where many users may be unsophisti­
cated.

-f This causes more to count logical lines, rather than screen
lines. That is, long lines are not folded. This option is
recommended if nroff output is being piped through ul,
since the latter may generate escape sequences. These
escape sequences contain characters which would ordi­
narily occupy screen positions, but which do not print
when they are sent to the terminal as part of an escape
sequence. Thus more may think that lines are longer
than they actually are, and fold lines erroneously.

-I Do not treat AL (form feed) specially. If this option is not
given, more will pause after any line that contains a AL, as
if the end of a screen full had been reached. Also, if a file
begins with a form feed, the screen will be cleared before
the file is printed.

-8 Squeeze multiple blank lines from the output, producing
only one blank line. Especially helpful when viewing
nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more will handle underlining such as produced
by nroff in a manner appropriate to the particular termi­
nal: if the terminal can perform underlining or has a

- 1 -

MORE(l) MORE(l)

stand-out mode, more will output appropriate escape
sequences to enable underlining or stand-out mode for
underlined information in the source file. The - u option
suppresses this processing.

+l£nenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular
expression pattern.

If the program is invoked as page, then the screen is cleared
before each screen full is printed (but only if a full screen is being
printed), and k - 1 rather than k - 2 lines are printed in each
screen full, where k is the number of lines the terminal can
display.

More looks in the TERMCAP environment variable or the file
/etc/termcRp to determine terminal characteristics, and to
determine the default window size. On a terminal capable of
displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to pre-set any
flags desired. For example, if you prefer to view files using the - c
mode of operation, the csh command setenv MORE - c or the sh
command sequence MORE= '-c' ; export MORE would cause all
invocations of more, including invocations by programs such as
man and msgs, to use this mode. Normally, the user will place
the command sequence which sets up the MORE environment
variable in the .cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percen­
tage is displayed along with the --More-- prompt. This gives the
fraction of the file (in characters, not lines) that has been read so
far.

Other sequences which may be typed when more pauses, and their
effects, are as follows (i is an optional integer argument, defaulting
to 1):

i <space>
display i more lines, (or another screen full if no argument
is given)

AD display 11 more lines (a "scroll"). If i is given, then the
scroll size is set to i.

d same as AD (control-D)

i z same as typing a space except that i, if present, becomes
the new window size.

is skip i lines and print a screen full of lines

if skip i screen fulls and print a screen full of lines

q or Q Exit from more.

Display the current line number.

- 2 -

MORE (1) MORE (1)

v Start up the editor vi at the current line.

h Help command; give a description of all the more com­
mands.

i /expr search for the ith occurrence of the regular expression
expr. If there are less than i occurrences of expr, and the
input is a file (rather than a pipe), then the position in the
file remains unchanged. Otherwise, a screen full is
displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters
may be used to edit the regular expression. Erasing back
past the first column cancels the search command.

in search for the ith occurrence of the last regular expression
entered.

(single quote) Go to the point from which the last search
started. If no search has been performed in the current
file, this command goes back to the beginning of the file.

!command
invoke a shell with command. The characters % and! in
command are replaced with the current file name and the
previous shell command respectively. If there is no
current file name, % is not expanded. The sequences \%
and \! are replaced by % and! respectively.

i:n skip to the ith next file given in the command line (skips
to last file if n doesn't make sense).

i:p skip to the ith previous file given in the command line. If
this command is given in the middle of printing out a file,
then more goes back to the beginning of the file. If i
doesn't make sense, more skips back to the first file. If
more is not reading from a file, the bell is rung and noth­
ing else happens.

:f display the current file name and line number.

:qor :Q
exit from more (same as q or Q).
(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to
type a carriage return. Up to the time when the command char­
acter itself is given, the user may hit the line kill character to can­
cel the numerical argument being formed. In addition, the user
may hit the erase character to redisplay the --More--(xx%) mes­
sage.

At any time when output is being sent to the terminal, the user
can hit the quit key (normally control- \). More will stop sending
output, and will display the usual --More-- prompt. The user
may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, due to the
fact that any characters waiting in the terminal's output queue
are flushed when the quit signal occurs.

- 3-

MORE(!) MORE(!)

FILES

The terminal is set to noecho mode by this program so that the
output can be continuous. What you type will thus not show on
your terminal, except for the / and! commands.

If the standard output is not a teletype, then more acts just like
cat, except that a header is printed before each ,file (if there is
more than one). \

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

jetcjtermcap
jusr jlibjmore.help

Terminal data base
Help file

SEE ALSO
sh(1), environ(5).

- 4-

NEWFORM(l) NEWFORM(l)

NAME
new form - change the format of a text file

SYNOPSIS
newform [-8] [-i tabspec] [-0 tabspec] [-b n] [-en] [-p n]
[-an] [-f] [-cchar] [-In] [files]

DESCRIPTION
New/orm reads lines from the named files, or the standard input
if no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line
options in effect.

Except for -8, command line options may appear in any order,
may be repeated, and may be intermingled with the optional files.
Command line options are processed in the order specified. This
means that option sequences like "-elS -160" will yield results
different from "-160 -elS n

. Options are applied to all files on the
command line.

-itabspec Input tab specification: expands tabs to spaces, accord­
ing to the tab specifications given. Tabspec recognizes
all tab specification forms described in tabs(l). In
addition, tabspec may be --, in which new/orm
assumes that the tab specification is to be found in the
first line read from the standard input (see /spec(4)).
If no tabspec is given, tabspec defaults to -8. A
tabspec of -0 expects no tabs; if any are found, they
are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs,
according to the tab specifications given. The tab
specifications are the same as for -itabspec. If no
tabspec is given, tabspec defaults to -8. A tabspec of
-0 means that no spaces will be converted to tabs on
output.

-I n Set the effective line length to n characters. If n is not
entered, -I defaults to 72. The default line length
without the -I option is 80 characters. Note that tabs
and backspaces are considered to be one character (use
-i to expand tabs to spaces).

- b n Truncate n characters from the beginning of the line
w hen the line length is greater than· the effective line
length (see -In). Default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no n is used.
This option can be used to delete the sequence
numbers from a COBOL program as follows:

newform -11 - b7 file-name

The -11 must be used to set the effective line length
shorter than any existing line in the file so that the - b
option is activated.

-en Same as -bn except that characters are truncated
from the end of the line.

- 1 -

NEWFORM(l)

-ck

-pn

-an

-f

-8

DIAGNOSTICS

NEWFORM(l)

Change the prefix/append character to k. Default
character for k is a space.

Prefix n characters (see - ck) to the beginning of a line
when the line length is less than the effective line
length. Default is to prefix the number of characters
necessary to obtain the effective line length.

Same as - p n except characters are appended to the
end of a line.

Write the tab specification format line on the standard
output before any other lines are output. The tab
specification format line which is printed will
correspond to the format specified in the last -0

option. If no -0 option is specified, the line which is
printed will contain the default specification of -8.

Shears off leading characters on each line up to the
first tab and places up to 8 of the sheared characters at
the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth character
is replaced by a * and any characters to the right of it
are discarded. The first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line.
The characters sheared off are saved internally until all
other options specified are applied to that line. The
characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one
or more tabs, and text on each line, to a file beginning
with the text, all tabs after the first expanded to
spaces, padded with spaces out to column 72 (or trun­
cated to column 72), and the leading digits placed
starting at column 73, the command would be:

newform -s -i -1 -a -e file-name

All diagnostics are fatal.
usage: ... Newform was called with a bad option.

There was no tab on one line. not - 8 format
can't open file
z"nternalline too long

tabspec £n error

tabspec t"ndirection illegal

Se If -exp lanatory.
A line exceeds 512 characters after
being expanded in the internal work
buffer.
A tab specification is incorrectly for­
matted, or specified tab stops are not
ascending.
A tabspec read from a file (or standard
input) may not contain a tabspec
referencing another file (or standard
input).

- 2 -

NEWFORM(l) NEWFORM(l)

EXIT CODES
o - normal execution
1 - for any error

SEE ALSO

BUGS

csplit(l), tabs(l), fspec(4).

N ew/orm normally only keeps track of physical characters; how­
ever, for the -i and -0 options, new/orm will keep track of back­
spaces in order to line up tabs in the appropriate logical columns.

New/orm will not prompt the user if a tabspec is to be read from
the standard input (by use of -i-- or -0--).
If the -f option is used, and the last -0 option specified was
-0--, and was preceded by either a -0-- or a -i--, the tab
specification format line will be incorrect.

- 3 -

NEWGRP(l) NEWGRP(l)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [- 1 [group 1

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously
to login(1M). The same person remains logged in, and the current
directory is unchanged, but calculations of access permissions to
files are performed with respect to the new group ID.

Newgrp without an argument changes the group identification to
the group in the password file; in effect it changes the group
identification back to the caller1s original group.

An initial - flag causes the environment to be changed to the one
that would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user
himself does not, or if the group has a password and the user is
not listed in jete/group as being a member of that group.

When most users log in, they are members of the group named
other.

/etc/group
/etc/passwd

SEE ALSO

BUGS

login(lM), group(4).

There is no convenient way to enter a password into jete/group.
Use of group passwords is not encouraged, because, by their very
nature, they encourage poor security practices. Group passwords
may disappear in the future.

- 1 -

NICE (1)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments 1

DESCRIPTION

NICE (1)

Nz'ce executes command with a lower CPU scheduling priority. If
the £ncrement argument (in the range 1-19) is given, it is used; if
not, an increment of 10 is assumed.

The super-user may run commands with priority higher than nor­
mal by using a negative increment, e.g., --10.

SEE ALSO
nohup(l), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- 1 -

NL(l) NL(l)

NAME
nl - line numbering filter

SYNOPSIS
nl [-htype] [-htype] [-ftype] [-vstart#] [-iincr] [-p] [-Inurn]
[-ssep] [-wwidth] [-nformat] [-ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file
is named and reproduces the lines on the standard output. Lines
are numbered on the left in accordance with the command options
in effect.

NI views the text it reads in terms of logical pages. Line number­
ing is reset at the start of each logical page. A logical page con­
sists of a header, a body, and a footer section. Empty sections are
valid. Different line numbering options are independently avail­
able for header, body, and footer (e.g: no numbering of header and
footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines con­
taining nothing but the following delimiter character(s):

Line contents Start of

\:\:\: header

\:\: body

\: footer

Unless optioned otherwise, nl assumes the text being read is in a
single logical page body.

Command options may appear in any order and may be intermin­
gled with an optional file name. Only one file may be named.
The options are:

- htype Specifies which logical page body lines are to be num­
bered. Recognized types and their meaning. are: a,
number all lines; t, number lines with printable text
only; n, no line numbering; pstring, number only
lines that contain the regular expression specified in
string. Default type for logical page body is t (text
lines numbered).

-htype Same as -htype except for header. Default type for
logical page header is n (no lines numbered).

-ftype Same as -htype except for footer. Default for logical
page footer is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

-v start# Start# is the initial value used to number logical
page lines. Default is 1.

-hncr Incr is the increment value used to number iogical
page lines. Default is 1.

- 1 -

NL(l) NL(l)

-ssep Sep is the character(s) used in separating the line
number and the corresponding text line. Default sep
is a tab.

-ww£dth Width is the number of characters to be used for the
line number. Default wt"dth is 6.

-nformat Format is the line numbering format. Recognized
values are: In, left justified, leading zeroes suppressed;
rn, right justified, leading zeroes suppressed; rz, right
justified, leading zeroes kept. Default format is rn
(right justified).

-Inum Num is the number of blank lines to be considered as
one" For example, -12 results in only the second
adjacent blank being numbered (if the appropriate
-ha, -ha, and/or -fa option is set). Default is 1.

-dxx The delimiter characters specifying the start of a logi-

EXAMPLE

cal page section may be changed from the default
characters (\:) to two user specified characters. If
only one character is entered, the second character
remains the default character (:). No space should
appear between the -d and the delimiter characters.
To enter a backslash, use two backslashes.

The command:

nl -vlO -ilO -d!+ filel file2

will number files land 2 starting at line number 10 with an incre­
ment of ten. The logical page delimiters are !+.

SEE ALSO
pr(1).

- 2 -

NM(l) NM(l)

NAME
nm - print name list of common object file

SYNOPSIS
nrn [-0] [-x] [-h] [-v] [-n] [-e] [-f] [-u] [-V]
[-T] file-names

DESCRIPTION
The nm command displays the symbol table of each common
object file file-name. File-name may be a relocatable or absolute
common object file; or it may be an archive of relocatable or abso­
lute common object files. For each symbol, the following informa­
tion will be printed:

N arne The name of the symbol.

Value Its value expressed as an offset or an address depending
on its storage class.

C lass I ts storage class.

Type Its type and derived type. If the symbol is an instance
of a structure or of a union then the structure or union
tag will be given following the type (e.g. struct-tag). If
the symbol is an array, then the array dimensions will
be given following the type (eg., char [n][m]). Note that
the object file must have been compiled with the -g
option of the C C (1) command for this information to
appear.

Size Its size in bytes, if available. Note that the object file
must have been compiled with the -g option of the
cC(l) command for this information to appear.

Line The source line number at which it is defined, if avail­
able. Note that the object file must have been compiled
with the -g option of the cC(l) command for this infor­
mation to appear.

Section For storage classes static and external, the object file
section containing the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of
decimal.

-x Print the value and size of a symbol in hexadecimal
instead of decimal.

-h Do not display the output header data.

-v Sort external symbols by value before they are printed.

-n Sort external symbols by name before they are printed.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text,
.data and .bss), normally suppressed.

-u Print undefined symbols only.

- 1 -

NM(l)

FILES

-v

-T

NM(l)

Print the version of the nm command executing on the
standard error output.

By default, nm prints the entire name of the symbols
listed. Since object files can have symbol names with an
arbitrary number of characters, a name that is longer
than the width of the column set aside for names will
overflow its column, forcing every column after the
n~me to be misaligned. The - T option causes nm to
truncate every name which would otherwise overflow its
column and place an asterisk as the last character in the
displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination,
and may appear anywhere in the command line. Therefore, both
nm name -e -y and nm -ye name print the static and exter­
nal symbols sorted by value.

jusr jtmp jnm ??????

CAVEATS
When all the symbols are printed, they must be printed in the
order they appear in the symbol table in order to preserve scoping
information. Therefore, the -y and -n options should be used
only in conjunction with the -e option.

SEE ALSO
as(I), cC(I), ld(l), a.out(4), ar(4).

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if name is not an appropriate common object file.

"nm: name: no symbols"
if the symbols have been stripped from name.

- 2 -

NOHUP(l) NOHUP(I)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments 1

DESCRIPTION
Nohup executes command with hangups and quits ignored. If
output is not re-directed by the user, it will be sent to
nohup.out. If nohup.out is not writable in the current direc­
tory, output is redirected to $HOME/nohup.out.

SEE ALSO
nice(l), signal(2).

- 1 -

NROFF(I) NROFF (1)

NAME
nroff - format text

SYNOPSIS
nroft' [options] [files]

DESCRIPTION
Nroff formats text contained in files (standard input by default)
for printing on typewriter-like devices and line printers. Its capa­
bilities are described in the NROFF / TROFF User's Manual cited
below.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which may
appear in any order, but must appear before the files, are:

-olist

-nN

-sN

-raN

-i

-q

-z

-rnname

-cname

-kname

-Tname

Print only pages whose page numbers appear in the lz"st
of numbers and ranges, separated by commas. A range
N - M means pages N through M; an initial - N means
from the beginning to page N; and a final N - means
from N to the end. (See BUGS below.)

Number first generated page N.

Stop every N pages. Nroff will halt after every N
pages (default N=l) to allow paper loading or chang­
ing, and will resume upon receipt of a line-feed or new­
line (new-lines do not work in pipelines, e.g., with
mm(l)). This option does not work if the output of
nroff is piped through col(l). When nroff halts
between pages, an ASCII BEL is sent to the terminal.

Set register a (which must have a one-character name)
to N.

Read standard input after files are exhausted.

Invoke the simultaneous input-output mode of the .rd
request.

Print only messages generated by .trn (terminal mes­
sage) requests.

Prep end to the input files the non-compacted (ASCII
text) macro file /usr/lib/tmac/tmac.name.

Prepend to the input files the compacted macro files
/usr/lib/rnacros/cmp.[nt].[dt].name and
/usr/lib/macros/ucmp.[nt].name.

Compact the macros used in this invocation of nroff,
placing the output in files [dt].name in the current
directory (see the May 1979 Addendum to the
NROFF / TROFF User's Manual for details of compact­
ing macro files).

Prepare output for specified terminal. Known name s
are 37 for the (default) TELETYPE Model 37 terminal,
tn300 for the GE TermiNet 300 (or any terminal
without half-line capability), 300s for the DASI 300s,
300 for the DASI 300, 450 for the DASI 450, lp for a

- 1 -

NROFF(l) NROFF(l)

FILES

(generic) ASCII line printer, 382 for the DTC-382,
4000A for the Trendata 4000A, 832 for the Anderson
Jacobson 832, X for a (generic) EBCDIC printer, and
2631 for the Hewlett Packard 2631 line printer.

-e Produce equally-spaced words in adjusted lines, using
the full resolution of the particular terminal.

-h Use output tabs during horizontal spacing to speed out­
put and reduce output character count. Tab settings
are assumed to be every 8 nominal character widths.

-un Set the emboldening factor (number of character over­
strikes) for the third font position (bold) to n, or to
zero if n is missing.

/usr/lib/suftab
/tmp/ta$#
/usr/lib/tmac/tmac.*
/usr/lib/macros/*
/usr/lib/term/*

suffix hyphenation tables
temporary file
standard macro files and pointers
standard macro files
terminal driving tables for nroff

SEE ALSO

BUGS

NROFF / TROFF User's Manual
A TROFF Tutorial
col(1), eqn(l), greek(1), mm(l), tbl(l), mm(5).

Nroff believes in Eastern Standard Time; as a result, depending on
the time of the year and on your local time zone, the date that
nroff generates may be off by one day from your idea of what the
date is.
When nroff is used with the -olist option inside a pipeline (e.g.,
with one or more of eqn(l) and tbl(1)), it may cause a harmless
"broken pipe" diagnostic if the last page of the document is not
specified in list.

- 2 -

OD (1) OD(I)

NAME
od - octal dump

SYNOPSIS
od [-bcd08X] [file] [[+]offset[•][b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first
argument. If the first argument is missing, -0 is default. The
meanings of the format options are:

- b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters
appear as C escapes: null=\O, backspace=\b, form­
feed=\r, new-line=\n, return=\r, tab=\t; others appear
as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-8 Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping
is to commence. This argument is normally interpreted as octal
bytes. If. is appended, the offset is interpreted in decimal. If b is
appended, the offset is interpreted in blocks of 512 bytes. If the
file argument is omitted, the offset argument must be preceded by
+.
Dumping continues until end-of-file.

SEE ALSO
dump(1).

- 1 -

PACK(1) PACK (1)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 name

pcat name

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file name is replaced
by a packed file name.z with the same access modes, access and
modified dates, and owner as those of name. If pack is successful,
name will be removed. Packed files can be restored to their origi­
nal form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by­
byte basis. If the - argument is used, an internal flag is set that
causes the number of times each byte is used, its relative fre­
quency, and the code for the byte to be printed on the standard
output. Additional occurrences of - in place of name will cause
the internal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the char­
acter frequency distribution is very skewed, which may occur with
printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size.
Load modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12
characters to allow space for the appended .z extension. Direc­
tories cannot be compressed.

Pcat does for packed files what cat(1) does for ordinary files. The
specified files are unpacked and written to the standard output.
Thus to view a packed file named name.z use:

- 1 -

PACK(l) PACK(l)

peat name.z
or just:

peat name

To make an unpacked copy, say nnn, of a packed file named
name.z (without destroying name .z) use the command:

pcat name > nnn

Pcat returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the .z) has more than 12 char­
acters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called
name.z (or just name, if name ends in .z). If this file appears to
be a packed file, it is replaced by its expanded version. The new
file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of
the packed file.

Unpack returns a value that is the number of files it was unable
to unpack. Failure may occur for the same reasons that it may in
pcat J as well as for the following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSWD (1) PASSWD (1)

NAME
passwd - change login password

SYNOPSIS
passwd name

DESCRIPTION

FILES

This command changes (or installs) a password associated with the
login name.

The program prompts for the old password (if any) and then for
the new one (twice). The caller must supply these. New pass­
words should be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if mono­
case. Only the first eight characters of the password are
significant.

Only the owner of the name or the super-user may change a pass­
word; the owner must prove he knows the old password. Only the
super-user can create a null password.

The password file is not changed if the new password is the same
as the old password, or if the password has not "aged"
sufficiently; see passwd(4).

/etc/passwd

SEE ALSO
login(lM), crypt(3C), passwd(4).

- 1 -

PASTE (1) PASTE (1)

NAME
paste - merge same lines of several files or subsequent lines of one
file

SYNOPSIS
paste file! file2 ...
paste -d list file! file2
paste -8 [-d list] file! file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of
the given input files file1, file 2, etc. It treats each file as a
column or columns of a table and pastes them together horizon­
tally (parallel merging). If you will, it is the counterpart of cat(!)
which concatenates vertically, i.e., one file after the other. In the
last form above, paste subsumes the function of an older com­
mand with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together
with the tab character, or with characters from an optionally
specified list. Output is to the standard output, so it can be used
as the start of a pipe, or as a filter, if - is used in place of a file
name.

The meanings of the options are:

-d Without this option, the new-line characters of each but
the last file (or last line in case of the -8 option) are
replaced by a tab character. This option allows replacing
the tab character by one or more alternate characters (see
below).

list One or more characters immediately following -d replace
the default tab as the line concatenation character. The
list is used circularly, i. e. when exhausted, it is reused. In
parallel merging (i. e. no -s option), the lines from the
last file are always terminated with a new-line character,
not from the list. The list may contain the special escape
sequences: \0 (new-line), \ t (tab), \ \ (backslash), and \0
(empty string, not a null character). Quoting may be
necessary, if characters have special meaning to the shell
(e.g. to get one backslash, use - d "\ \ \ \").

-s Merge subsequent lines rather than one from each input
file. Use tab for concatenation, unless a list is specified
with -d option. Regardless of the list, the very last char­
acter of the file is forced to be a new-line.

May be used in place of any file name, to read a line from
the standard input. (There is no prompting).

EXAMPLES
Is I paste -d" " -

Is I paste - - - -

paste -s -d"\ t\ n" file

SEE ALSO
grep(1), cut(l),

- 1 -

list directory in one column

list directory in four columns

com bine pairs of lines into lines

PASTE(l) PASTE(l)

pr(1): pr -t -ffi. .. works similarly, but creates extra blanks,
tabs and new-lines for a nice page layout.

DIAGNOSTICS
lz"ne too long

too many files

Output lines are restricted to 511 charac­
ters.

Except for -8 option, no more than 12
input files may be specified.

- 2 -

PATH (1) PATH (1)

NAME
path - locate executable file for command

SYNOPSIS
path command

DESCRIPTION
Path is a quick way to discover what executable file is behind a
shell command. It searches each directory mentioned in your
PATH environment variable until it finds an executable file called
command.

- 1 -

PRe!) PR(I)

NAME
pr - print files

SYNOPSIS
pr [options 1 [files 1

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or
if no files are specified, the standard input is assumed. By default,
the listing is separated into pages, each headed by the page
number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the -8 option is
used, lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error mes­
sages are withheld until pr has completed printing.

The below options may appear singly or be combined in any order:

+ k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e
and -i are assumed for multi-column output.

-8. Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column
(overrides the -k, and -8. options).

-d Double-space the output.

-eck Expand input tabs to character positions k+1, 2*k+1,
3*k+1, etc. If k is 0 or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of spaces.
If c (any non-digit character) is given, it is treated as the
input tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by insert­
ing tabs to character positions k+1, 2*k+1, 3*k+1, etc.
If k is 0 or is omitted, default tab settings at every eighth
position are assumed. If c (any non-digit character) is
given, it is treated as the output tab character (default for
c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The
number occupies the first k + 1 character positions of each
column of normal output or each line of -m output. If c
(any non-digit character) is given, it is appended to the
line number to separate it from whatever follows (default
for c is a tab).

-wk Set the width of a line to k character positions (default is
72 for equal-width multi-column output, no limit other­
wise).

- 1 -

PR(l)

-ok

-lk

-h

-p

-f

-r

-t

-sc

PR(l)

Offset each line by k character positions (default is 0).
The number of character positions per line is the sum of
the width and offset.

Set the length of a page to k lines (default is 66).

Use the next argument as the header to be printed instead
of the file name.

Pause before beginnjng each page if the output is directed
to a terminal (pr will ring the bell at the terminal and
wait for a carriage return).

Use form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first
page if the standard output is associated with a terminal.

Print no diagnostic reports on failure to open files.

Print neither the five-line identifying header nor the five­
line trailer normally supplied for each page. Quit printing
after the last line of each file without spacing to the end
of the page.

Separate columns by the single character c instead of by
the appropriate number of spaces (default for c is a tab).

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing
headed by "file list":

pr -3dh "file list" file! file2

Write filel on file2, expanding tabs to columns 10, 19, 28, 37, ...

pr -e9 -t <filel >file2

/dev/tty*

SEE ALSO

to suspend messages

cat(1).

- 2 -

PROF (1) PROF (1)

NAME
prof - display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g] [-z] [-h] [-8] [-m mdata] [prog]

DESCRIPTION

FILES

Prof interprets the profile file produced by the monz"tor(3C) func­
tion. The symbol table in the object file prog (a.out by default)
is read and correlated with the profile file (mon.out by default).
For each external text symbol the percentage of time spent execut­
ing between the address of that symbol and the address of the
next is printed, together with the number of times that function
was called and the average number of milliseconds per call.

The mutually exclusive options t, c, a, and n determine the type
of sorting of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-8, Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of
the address of each symbol monitored:

-0 Print each symbol address (in octal) along with the sym­
bol name.

-x Print each symbol address (in hexadecimal) along with the
symbol name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see mon£tor(3C)),
even if associated with zero number of calls and zero time.

- h Suppress the heading normally printed on the report.
(This is useful if the report is to be processed further.)

-8 Print a summary of several of the monitoring parameters
and statistics on the standard error output.

-m mdata
Use file mdata instead of mon.out for profiling data.

For the number of calls to a function to be tallied, the -p option
of cc(l) must have been given when the file containing the func­
tion was compiled. This option to the cc command also arranges
for the object file to include a special profiling start-up function
that calls monitor(3C) at the beginning and end of execution. It
is the call to monitor at the end of execution that causes the
mon.out file to be written. Thus, only programs that call exit(2)
or return from main will cause the mon.out file to be produced.

mon.out for profile
a.out for namelist

- 1 -

PROF (1) PROF(l)

SEE ALSO

BUGS

cc(1), nm(l), exit(2), profil(2), monitor(3C).

There is a limit of 300 functions that may have call counters esta­
blished during program execution. If this limit is exceeded, other
data will be overwritten and the mon.out file will be corrupted.
The number of call counters used will be reported automatically
by the prof command whenever the number exceeds 250.

- 2 -

PRS (1) PRS (1)

NAME
prs - print an sees file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file
(see sccsjile(4)) in a user supplied format. If a directory is named,
prs behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of the path
name does not begin with s.), and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file
or directory to be processed; non-sees files and unreadable files
are silently ignored.

Arguments to prs, which may appear in any order, consist of
keyletter arguments, and file names.

All the described keyletter arguments apply independently to each
named file:

-d[dataspec]

-r[SID]

-e

-I

-a

DATA KEYWORDS

Used to specify the output data
specification. The dataspec is a string con­
sisting of sees file data keywords (see
DATA KEYWORDS) interspersed with
optional user supplied text.

Used to specify the Sees IDentification
(SID) string of a delta for which information
is desired. If no SID is specified, the SID of
the most recently created delta is assumed.

Requests information for all deltas created
earlier than and including the delta desig­
nated via the -r keyletter.

Requests information for all deltas created
later than and including the delta desig­
nated via the -r keyletter.

Requests printing of information for both
removed, i.e., delta type = R, (see
rmdel(l)) and existing, i.e., delta type =
D, deltas. If the -a key letter is not
specified, information for existing deltas
only is provided.

Data keywords specify which parts of an sees file are to be
retrieved and output. All parts of an sees file (see sc csjile (4))
have an associated data keyword. There is no limit on the
number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user supplied
text; and (2) appropriate values (extracted from the sees file) sub­
stituted for the recognized data keywords in the order of appear­
ance in the dataspec. The format of a data keyword value is

- 1 -

PRS(l) PRS(l)

either Simple (8), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a
carriage return.

User supplied text is any text other than recognized data key­
words. A tab is specified by \ t and carriage return/new-line is
specified by \n.

TABLE l. sees Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below· S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn S
:Ld: Lines deleted by Delta " nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type " D or R S

:1: SCCS ID string (SID) " :R:.:L:.:B:.:S: S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:D: Date Delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created " nn S
:Dm: Month Delta created " nn S
:Dd: Day Delta created " nn S
:T: Time Delta created " :Th:::Tm:: :Ts: S
:Th: Hour Delta created " nn S
:Tm: Minutes Delta created " nn S
:Ts: Seconds Delta created " nn S
:P: Programmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta seq-no. " nnnn S
:DI: Seq-no. of deltas incl., excl., ignored " :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) " :DS: :DS: ... S
:Dx: Deltas excluded (seq #) " :DS: :DS: '" S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta " text M
:C: Comments for delta " text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag " text S

:MF: MR validation flag " yeB or no S
:MP: MR validation pgm name " text S
:KF: Keyword error/warning flag " yeB or no S
:BF: Branch flag " yeB or no S
:J: Joint edit flag " yeB or no S

:LK: Locked releases " :R: .•• S
:Q: User defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " :1: S
:ND: Null delta flag " yeB or no S
:FD: File descriptive text Comments text M

• :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

- 2 -

PRS(l) PRS (1)

TABLE 1 (Continued)
Keyword Data Item File Section Value Format

:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what(l) string N/A :Z::M:\t:I: S
:A: A form of what(l) string N/A :Z::Y: :M: :I::Z: S
:Z: what(l) string delimiter N/A @(#) S
:F: sees file name N/A text S

:PN: sees file path name N/A text S

• :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

EXAMPLES

FILES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:"
-r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the (CD" type. The only keyletter
argument allowed to be used with the special case is the -&

keyletter.

/tmp/pr?????

SEE ALSO
admin(1), delta(l), get(1), help(l), sccsfile(4).
Source Code Control System User's Guide in the UNIX System
User's Guide.

DIAGNOSTICS
Use help(l) for explanations.

- 3 -

PS(I) PS(l)

NAME
ps - report process status

SYNOPSIS
ps [options 1

DESCRWTION
Ps prints certain information about active processes. Without
optt"ons, information is printed about processes associated with the
current terminal. Otherwise, the information that is displayed is
controlled by the following opts"ons:

-e Print information about all processes.

-d Print information about all processes, except process
group leaders.

-a Print information about all processes, except process
group leaders and processes not associated with a
terminal.

-f Generate a full listing. (Normally, a short listing
containing only process ill, terminal ("tty")
identifier, cumulative execution time, and the com­
mand name is printed.) See below for meaning of
columns in a full listing.

-I Generate a long listing. See below.

-c coref£le Use the file corefile in place of / dey / memo

-s swapdev Use the file swapdev in place of / dey / swap. This
is useful when examining a corefile; a swapdev of
/ dey /null will cause the user block to be zeroed
out.

-n namelt"st The argument will be taken as the name of an alter­
nate namel£st (/unix is the default).

-t tl£st

-p pUst

-u ult"st

Restrict listing to data about the processes associ­
ated with the terminals given in tl£st, where tl£st can
be in one of two forms: a list of terminal identifiers
separated from one another by a comma, or a list of
terminal identifiers enclosed in double quotes and
separated from one another by a comma and/or one
or more spaces.

Restrict listing to data about processes whose pro­
cess ill numbers are given in plz'st, where pl£st is in
the same format as tl£st.

Restrict listing to data about processes w hose user ID
numbers or login names are given in ulz"st, where
ul£st is in the same format as tlt"st. In the listing,
the numerical user ID will be printed unless the -f
option is used, in which case the login name will be
printed.

- 1 -

PS(l)

-g glt'st

PS(l)

Restrict listing to data about processes whose pro­
cess groups are given in glist, where gUst is a list of
process group leaders and is in the same format as
tlist.

The column headings and the meaning of the columns in a ps list­
ing are given below; the letters f and 1 indicate the option(tull or
long) that causes the corresponding heading to appear; all means
that the heading always appears. Note that these two options
only determine what information is provided for a process; they do
not determine which processes will be listed.

F (1) Flags (octal and additive) associated with the

S (I)

UID (f,l)

PID (all)

PPID (f,l)

C (f,l)

STIME (f)

PRI (1)

NI (1)
ADDR (1)

SZ (1)

process:

01 iIi core;

02 system process;

04 locked in core (e.g., for physical I/O);
10 being swapped;

20 being traced by another process;

40 another tracing flag.

The state of the process:

o non-existent;

S sleeping;

W waiting;

R running;

intermediate;

Z terminated;

T stopped;

X growing.

The user ID number of the process owner; the
login name is printed under the -f option.

The process in of the process; it is possible to
kill a process if you know this datum.

The process ID of the parent process.

Processor utilization for scheduling.

Starting time of the process.

The priority of the process; higher numbers
mean lower priority.

Nice value; used in priority computation.

The memory address of the process (a pointer to
the segment table array on the 3B20S), if
resident; otherwise, the disk address.

The size in blocks of the core image of the pro­
cess.

- 2 -

PS(I)

FILES

WCHAN (1)

PS(I)

The event for which the process is waiting or
sleeping; if blank, the process is running.

TTY (all) The controlling terminal for the process.

TIME (all) The cumulative execution time for the process.

The command name; the full command name
and its arguments are printed under the -f

CMD (all)

option.

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked < defunct>.

Under the -f option, ps tries to determine the command name
and arguments given when the process was created by examining
memory or the swap area. Failing this, the command name, as it
would appear without the -f option, is printed in square brackets.

/unix
/dev/mem
/dev/swap
/etc/passwd
/etc/ps_data
/dev

system namelist.
memory.
the default swap device.
supplies UID information.
internal data structure.
searched to find terminal ("tty") names.

SEE ALSO

BUGS

kill(1), nice(l).

Things can change while ps is running; the picture it gives is only
a close approximation to reality. Some data printed for defunct
processes are irrelevant.

- 3 -

PTX(1) PTX(l)

NAME
ptx - permuted index

SYNOPSIS
ptx [options 1 [input [output 1 1

DESCRIPTION

FILES

Ptx generates the file output that can be processed with a text for­
matter to produce a permuted index of file input (standard input
and output default). It has three phases: the first does the permu­
tation, generating one line for each keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword comes at the
middle of each line. Ptx output is in the form:

.xx "tail" "before keyword" "keyword aftlld after" "head"

where .xx is assumed to be an nroff or troff macro provided by
the user, or provided by the mptx(5) macro package. The before
keyword and keyword and after fields incorporate as much of the
line as will fit around the keyword when it is printed. Tail and
head, at least one of which is always the empty string, are
wrapped-around pieces small enough to fit in the unused space at
the opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output
line. The default line length is 72 characters for nroff
and 100 for troff.

-g n Use the next argument, n, as the number of charac­
ters that ptx will reserve in its calculations for each
gap among the four parts of the line as finally
printed. The default gap is 3.

-0 only Use as keywords only the words given in the only file.

-i ignore Do not use as keywords any words given in the ignore
file. If the -i and -0 options are missing, use
/usr/lib/eign as the ignore file.

-b break Use the characters in the break file to separate words.
Tab, new-line, and space characters are always used
as break characters.

-r Take any leading non-blank characters of each input
line to be a reference identifier (as to a page or
chapter), separate from the text of the line. Attach
that identifier as a 5th field on each output line.

The index for this manual was generated using ptx.

Ibin/sort
I usr IIi b I eign
lusr llib/tmac/tmac.ptx

- 1 -

PTX (1) PTX(1)

SEE ALSO

BUGS

nroff(l), mm(5), mptx(5).

Line length counts do not account for overstriking or proportional
spacing.
Lines that contain tildes (-) are botched, because ptx uses that
character internally.

- 2 -

PWD (1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION

PWD (1)

Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l).

DIAGNOSTICS
"Cannot open .. " and "Read error in .. Jl indicate possible file sys.;
tern trouble and should be referred to a UNIX programming coun­
selor.

- 1 -

REGCMP (1) REGCMP (1)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp(3X)
from C programs. This saves on both execution time and program
size. The command regcmp compiles the regular expressions in
file and places the output in file.i. If the - option is used, the
output will be placed in file .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of
regcmp is C source code. Compiled regular expressions are
represented as extern cha.r vectors. File.i files may thus be
included into C programs, or file.c files may be compiled and
later loaded. In the C program which uses the regcmp output,
regex(abc ,line) will apply the regular expression named abc to
line. Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z] [A-Za-zO-9_l*)$O"

telno "\({O,I}([2-9][OI][I-9])$O\){O,l} *"
"([2-9] [O-9]{2})$l[-]{O,l}"
"([O-9]{4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

- 1 -

RM(l) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri 1 file

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If
an entry was the last link to the file, the file is destroyed. Remo­
val of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

If a file has no write permission and the standard input is a termi­
nal, its permissions are printed and a line is read from the stan­
dard input. If that line begins with y the file is deleted, otherwise
the file remains. No questions are asked when the -f option is
given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed
unless the optional argument -r has been used. In that case, rm
recursively deletes the entire contents of the specified directory,
and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete
each file, and, under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be
empty.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file •.
merely to avoid the antisocial consequences of inadvertently doing
something like:

rm -r .*

- 1 -

RMDEL(l) RMDEL (1)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named
sees file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named sees
file. In addition, the delta specified must not be that of a version
being edited for the purpose of making a delta (i. e., if a p-file (see
get(1)) exists for the named SCCS file, the delta specified must not
appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed; non-SeCS files and
unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented
in the Source Code Control System User's GuZ"de. Simply stated,
they are either (1) if you make a delta you can remove it; or (2) if
you own the file and directory you can remove a delta.

x-file (see delta(1))
z-file (see delta(1))

SEE ALSO
delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User's Guz'de in the UNIX System
User's GuZ"de.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

SACT(1) SACT(1)

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named sees
file. This situation occurs when get(l) with the -e option has
been previously executed without a subsequent execution of
delta(l). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a
named file, except that non-SCeS files and unreadable files are
silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an sees file to be
processed.

The output for each named file consists of five fields separated by
spaces.

SEE ALSO

Field 1

Field 2

Field 3

Field 4

Field 5

specifies the SID of a delta that currently exists
in the sees file to which changes will be made
to make the new delta.

specifies the SID for the new delta to be
created.

contains the logname of the user who will
make the delta (i.e. executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta(l), get(l), unget(l).

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

SCCSDIFF (1) SCCSDIFF (1)

NAME
sccsdiff - compare two versions of ~n sees file

SYNOPSIS
sccsdiff -rSIDl -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

Sccsd£Jj compares two versions of an sces file and generates the
differences between the two versions. Any number of sces files
may be specified, but arguments apply to all files.

-rSID? SIDl and SID2 specify the deltas of an sees
file that are to be compared. Versions are
passed to bd£Jj(l) in the order given.

-p pipe output for each file through pr(1).

-sn n is the file segment size that bdzjJ will pass to
d£Jj(l). This is useful when d£Jj fails due to a
high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(1), get(1), help(1), pr(1).
Source Code Control System User's Gu£de
UNIX System User's Gu£de.

DIAGNOSTICS
telae: No differences" If the two versions are the same.
Use help(l) for explanations.

- 1 -

SCRSET (1) (AT&T UNIX PC only) SCRSET (1)

NAME
scrset - set screen save time

SYNOPSIS
scrset [n 1

DESCRIPTION
Scrset enables and disables the screen save feature. When
enabled, this feature causes the screen to go blank after a given
interval of time has elapsed with no keyboard or mouse input; the
next keystroke or mouse motion restores the screen display. This
is a new feature of the UNIX PC 3.0 release.

The parameter n, if greater than 0, is the number of seconds to
delay before turning off the screen. N equal to 0 turns off the
screen save feature (this is the default condition). If n is less than
0, the screen is immediately turned off.

- 1 -

SDB (1) SDB (1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION
Sdb is a symbolic debugger that can be used with C programs. It
may be used to examine their obj ect files and core files and to pro­
vide a controlled environment for their execution.

Obifil is normally an executable program file which has been com­
piled with the -g (debug) option; if it has not been compiled with
the -g option, or if it is not an executable file, the symbolic capa­
bilities of sdb will be limited, but the file can still be examined
and the program debugged. The default for obifil is a.out.
Corfil is assumed to be a core image file produced after executing
obifil; the default for corfil is core. The core file need not be
present. A - in place of corfil will force sdb to ignore any core
image file. The colon separated list of directories (directories-list)
is used to locate the source files used to build obJfil.

It is useful to know that at any time there is a current line and
current file. If corfil exists then they are initially set to the line
and file containing the source statement at which the process ter­
minated. Otherwise, they are set to the first line in mainO. The
current line and file may be changed with the source file examina­
tion commands.

Initially sdb has a greater-than character (» prompt, which indi­
cates that sdb is ready for the user to enter the first command.
After sdb has begun, the prompt is < x>, where x is the name of
the last command given.

By default, warnings are provided if the source files used in pro­
ducing obJfil cannot be found, or are newer than objfil. This
checking feature and the accompanying warnings may be disabled
by the use of the - W flag.

Names of variables are written just as they are in C. Note that
names in C are now of arbitrary length, sdb will no longer trun­
cate names. Variables local to a procedure may be accessed using
the form procedure :variable. If no procedure name is given, the
procedure containing the current line is used by default.

It is also possible to refer to structure members as
variable .member, pointers to structure members as
variable - > member and array elements as variable [number].
Pointers may be dereferenced by using the form pointer [0]. Com­
binations of these forms may also be used. A number may be
used in place of a structure variable name, in which case the
number is viewed as the address of the structure, and the tem­
plate used for the structure is that of the last structure referenced
by sdb. An unqualified structure variable may also be used with
various commands. Generally, sdb will interpret a structure as a
set of variables. Thus, sdb will display the values of all the ele­
ments of a structure when it is requested to display a structure.

- 1 -

SDB (1) SDB (1)

An exception to this interpretation occurs when displaying vari­
able addresses. An entire structure does have an address, and it is
this value sdb displays, not the addresses of individual elements.

Elements of a multidimensional array may be referenced as

variable [number] [number] ... ,

or as

varz"able [number,number, ...].

In place of number, the form number;number may be used to
indicate a range of values, * may be used to indicate all legitimate
values for that subscript, or subscripts may be omitted entirely if
they are the last subscripts and the full range of values is desired.
AI:, with structures, sdb displays all the values of an array or sec­
tion of an array if trailing subscripts are omitted. It displays only
the address of the array itself or section specified by the user if
subscripts are omitted.

A particular instance of a variable on the stack may be referenced
by using the form procedure :variable ,number. All the variations
mentioned in naming variables may be used. Number is the
occurrence of the specified procedure on the stack, counting the
top, or most current, as the first. If no procedure is specified, the
procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of
integer constants which are valid in C may be used, so that
addresses may be input in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file­
name :number or procedure:number. In either case the number is
relative to the beginning of the file. If no procedure or file name is
given, the current file is used by default. If no number is given,
the first line of the named procedure or file is used.

While a process is running under sdb, all addresses refer to the
executing program; otherwise they refer to obifil or corfil. An ini­
tial argument of -w permits overwriting locations in obifil.

Addresses.
The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, el, /1) and (b2, e2, /2) and the file
address corresponding to a written address is calculated as fol­
lows:

bl-;;;;:. address< el

file address= address+/l- bl

otherwise

b2-;;;;:. address< e2

file address= address+/2- b2

otherwise, the requested address is not legal. In some cases (e.g.
for programs with separated I and D space) the two segments for a

- 2 -

SDB (1) SDB (1)

file may overlap.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected, then for
that file, b1 is set to 0, e1 is set to the maximum file size, and /1
is set to 0; in this way the whole file can be examined with no
address translation.

In order for sdb to be used on large files all appropriate values are
kept as signed 32-bit integers.

Commands.
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

varz"able / elm
Print the value of vart"able according to length I and format
m. A numeric count c indicates that a region of memory,
beginning at the address implied by varz"able, is to be
displayed. The length specifiers are:

b one byte
h two bytes (half word)
I four bytes (long word)

Legal values for mare:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assume vara'able is a string pointer and

print characters starting at the address
pointed to by the variable.

a Print characters starting at the variable's
address. This format may not be used with
register variables.

p pointer to procedure
disassemble machine language instruction
with addresses printed symbolically.

I disassemble machine language instruction
with addresses just printed numerically.

The length specifiers are only effective with the formats[c,
d, u, 0 and x. Any of the specifiers c, I, and m may be
omitted. If all are omitted, sdb chooses a length and a for­
mat suitable for the variable's type as declared in the pro­
gram. If m is specified, then this format is used for display­
ing the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in
truncation. A count specifier c tells sdb to display that many
units of memory, beginning at the address of varz"able. The
number of bytes in one such unit of memory is determined

- 3-

SDB(1) SDB (1)

by the length specified I, or if no length is given, by the size
associated with the var£able, If a count specifier is used for
the s or a command, then that many characters are printed.
Otherwise successive characters are printed until either a
null byte is reached or 128 characters are printed. The last
variable may be redisplayed with the command. /.

The sh(l) metacharacters * and? may be used within pro­
cedure and variable names, providing a limited form of pat­
tern matching. If no procedure name is given, both variables
local to the current procedure and global variables are
matched; if a procedure name is specified then only variables
local to that procedure are matched. To match only global
variables, the form :pattern is used.

lz'nenumber?lm
varz'able:?lm

Print the value at the address from a.out or I space given
by /t'nenumber or varz'able (procedure name), according to
the format 1m. The default format is 'i'.

varz'able =lm
lz'nenumber=lm
number=lm

Print the address of varz'able or linenumber, or the value of
number, in the format specified by 1m. If no format is
given, then Ix is used. The last variant of this command
provides a convenient way to convert between decimal, octal
and hexadecimal.

vart'able !value
Set vart'able to the given value. The value may be a
number, character constant or a variable. The value must
be well defined; expressions which produce more than one
value, such as structures, are not allowed. Character con­
stants are denoted 'character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers
are viewed as integers. The vart'able may be an expression
which indicates more than one variable, such as an array or
structure name. If the address of a variable is given, it is
regarded as the address of a variable of type t'nt, C conven­
tions are used in performing any type conversions necessary
to perform the indicated assignment.

f Print the 68881 floating-point registers.

x Print the machine registers and the current machine-
language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e dz'rectory/

- 4 -

SDB(1) SDB (1)

e directory file-name
The first two forms set the current file to the file containing
procedure or to file-name. The current line is set to the
first line in the named procedure or file. Source files are
assumed to be in directory. The default is the current
working directory. The latter two forms change the value of
directory. If no procedure, file name, or directory is given,
the current procedure and file names are reported.

/ regular expression /
Search forward from the current line for a line containing a
string matching regular expression as in ed(1). The trailing
/ may be omitted.

?regular expression?
Search backward from the current line for a line containing
a string matching regular expression as in ed(1). The trail­
ing ? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the
current line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new
current line.

count+
Advance the current line by count lines. Print the new
curren t line.

count-
Retreat the current line by count lines. Print the new
current line.

The commands for controlling the execution of the source program
are:

count r args
count R

Run the program with the given arguments. The r com­
mand with no arguments reuses the previous arguments to
the program while the R command runs the program with
no arguments. An argument beginning with < or > causes
redirection for the standard input or output, respectively. If
count is given, it specifies the number of breakpoints to be
ignored.

lz'nenumber c count
l£nenumber C count

Continue after a breakpoint or interrupt. If count is given,
it specifies the number of breakpoints to be ignored. C con­
tinues with the signal which caused the program to stop and
c ignores it. If a linenumber is specified then a temporary
breakpoint is placed at the line and execution is continued.
This temporary breakpoint is deleted when the command

- 5 -

SDB(1) SDB (1)

finishes.

l£nenumber g count
Continue after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of
breakpoints to be ignored.

s count
S count

i

Single step the program through count lines. If no count is
given then the program is ruri for one line. S is equivalent
to s except it steps through· procedure calls.

I Single step by one machine language instruction. I steps
with the signal which caused the program to stop reac­
tivated and i ignores it.

var£able$rn count
address:rn count

Single step (as with s) until the specified location is modified
with a new value. If count is omitted, it is effectively
infinity. Variable must be accessible from the current pro­
cedure. Since this command is done by software, it can be
very slow.

level v
Toggle verbose mode, for use when single stepping with S, s
or rn. If level is omitted, then just the current source file
and/or subroutine name is printed when either changes. If
level is 1 or greater, each C source line is printed before it is
executed; if level is 2 or greater, each assembler statement is
also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debugged.

procedure(argl,arg2, ...)
procedure(argl,arg2, ...)/ m

Execute the named procedure with the given arguments.
Arguments can be integer, character or string constants or
names of variab~es accessible from the current procedure.
The second form causes the value returned by the procedure
to be printed according to format m. If no format is given,
it defaults to d.

Unenumber b commands
Set a breakpoint at the given line. If a procedure name
without a line number is given (e.g. "proc:"), a breakpoint is
placed at the first line in the procedure even if it was not
compiled with the -g option. If no l£nenumber is given, a
breakpoint is placed at the current line. If no commands are
given then execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are
executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating
them with semicolons. If k is used as a command to execute
at a breakpoint, control returns to sdb, instead of continuing

- 6 -

SDB (1) SDB (1)

execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is
given then the breakpoints are deleted interactively: each
breakpoint location is printed and a line is read from the
standard input. If the line begins with a y or d then the
breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

linenumber a.
Announce. If linenumber is of the form proc:number, the
command effectively does a linenumber b l. If linenumber is
of the form proc:, the command effectively does a proc: b
T.

Miscellaneous commands:

!command
The command is interpreted by sh(1).

new-line
Perform the previous command again.

control-D
Scroll. Print the next 10 lines of instructions, source or data
depending on which was printed last.

< filename
Read commands from filename until the end of file is
reached, and then continue to accept commands from stan­
dard input. When sdb is told to display a variable by a
command in such a file, the variable name is displayed along
with the value. This command may not be nested; < may
not appear as a command in a file.

M Print the address maps.

M [7/] [*] b e f
Record new values for the address map. The arguments?
and / specify the text and data maps respectively. The first
segment, (b1, e1 ,f1), is changed unless * is specified, in
which case the second segment (b 2 ,e 2 ,/2) of the mapping is
changed. If fewer than three values are given, the remaining
map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form
\character are recognized, where character is a nonnumeric
character.

q Exit the debugger.

The following commands also exist and are intended only for
debugging the debugger:

- 7 -

SDB (1) SDB (1)

FILES

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

Sdb may be instructed to monitor a given memory location and
stop the program when the value at that location changes in a
given way. For example:

> if x < = 123

The above example instructs sdb to monitor the value at location
x. When the user gives the command to continue (c), sdb checks
the value of x at every source line executed and stops the program
if the given condition becomes true. Note that use of this con­
straint slows the real-time execution of a program.

The syntax of the £/ command is as follows:

if Shows a list of the current data breakpoints; assigns a
number to each.

if var Monitors the value of var and stops the program if the
value changes. A variable name may be used for var, as
well as a constant address. Comparisons are done as
either 4-byte signed or 4-byte unsigned, depending on the
data type. To perform a I-byte or 2-byte comparison, an
optional length value may accompany var. An example of
a 2-byte comparison is

if x,2 = Oxff

if var rei value
Compares the value of var to the constant given and stops
the program if the condition is true. The values of rei
may be =, ==, <, <=, >, >=, or !=.

off n Disables or turns off a data breakpoint without removing
it from the list.

on n Enables a breakpoint that was turned off.

out n Removes a breakpoint from the list.

Conditional breakpoints are used in a manner similar to data
breakpoints, except that the user specifies a place in the program
at which sdb should stop to check the data values. For example,

mysub:99 b if xyz = 123

The above example instructs sdb to check the value of xyz every
time the program arrives at line 99 of subroutine mysub. If the
condition is true, then execution stops there, as with a normal
breakpoint. This type of breakpoint does not monitor the value
xyz at every line of code, as the data breakpoint does.

a.out
core

SEE ALSO
cc(I), sh(1), a.out(4), core(4).

- 8-

SDB(1) SDB (1)

WARNINGS

BUGS

When sdb prints the value of an external variable for which there
is no debugging information, a warning is printed before the value.
The value is assumed to be int (integer).

Data which are stored in text sections are indistinguishable from
functions.

Line number information in optimized functions is unreliable, and
some information may be missing.

If a procedure is called when the program is not stopped at a
breakpoint (such as when a core image is being debugged), all
variables are initialized before the procedure is started. This
makes it impossible to use a procedure which formats data from a
core image.

When setting a breakpoint at a procedure, sdb will inconsistently
produce the incorrect line number. This seems to occur when the
object file is newer than the source file. Recompiling the source
program will correct this problem.

- 9 -

SDWF (1) SDWF (1)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ... 1 file1 file2

DESCRIPTION
Sd£ff uses the output of d£ff(l) to produce a side-by-side listing of
two files indicating those lines that are different. Each line of the
two files is printed with a blank gutter between them if the lines
are identical, a < in the gutter if the line only exists in fUel, a >
in the gutter if the line only exists in file2, and a I for lines that
are different.

For example:

x y
a a
b <
c <
d d

> c

The following options exist:

-w n Use the next argument, n, as the width of the output
line. The default line length is 130 characters.

-I Only print the left side of any lines that are identical.

-8 Do not print identical lines.

-0 output Use the next argument, output, as the name of a third
file that is created as a user controlled merging of
fUel and file2. Identical lines of filel and file2 are
copied to output. Sets of differences, as produced by
d£ff(l), are printed; where a set of differences share a
common gutter character. After printing each set of
differences, sd£ff prompts the user with a % and
waits for one of the following user-typed commands:

append the left column to the out­
put file

r append the right column to the out­
put file

8 turn on silent mode; do not print
identical lines

v turn off silent mode

e 1 call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatena­
tion of left and right

e call the editor with a zero length file

q exit from the program

- 1 -

SDIFF (1)

SEE ALSO

SDIFF (1)

On exit from the editor, the resulting file is con­
catenated on the end of the output file.

diff(1), ed(l).

- 2 -

SED (1) SED (1)

NAME
sed - stream editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files 1

DESCRIPTION
Sed copies the named files (standard input default) to the stan­
dard output, edited according to a script of commands. The-f
option causes the script to be taken from file sfile; these options
accumulate. If there is just one -e option and no -f options, the
flag -e may be omitted. The -n option suppresses the default
output. A script consists of editing commands, one per line, of the
following form:

[address [, address 1 1 function [arguments 1
In normal operation, sed cyclically copies a line of input into a
pattern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that pat­
tern space, and at the end of the script copies the pattern space to
the standard output (except under - n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input,
or a context address, i.e., a / regular expression/in the style of
ed(l) modified thus:

In a context address, the construction \ ?regular expres­
sion?, where ? is any character, is identical to
/ regular expression /. Note that in the context
address \xabc\xdefx, the second x stands for
itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in
the pattern space.

A period • matches any character except the terminal
new-line of the pattern space.

A command line with no addresses selects every pattern
space.

A command line with one address selects each pattern
space that matches the address.

A command line with two addresses selects the inclusive
range from the first pattern space that matches
the first address through the next pattern space
that matches the second. (If the second address is
a number less than or equal to the line number
first selected, only one line is selected.)
Thereafter the process is repeated, looking again
for the first address.

Editing commands can be applied only to non-selected pattern
spaces by use of the negation function! (below).

- 1 -

SED (1) SED (1)

In the following list of functions the maximum number of permis­
sible addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of
which end with \ to hide the new-line. Backslashes in text are
treated like backslashes in the replacement string of an s com­
mand, and may be used to protect initial blanks and tabs against
the stripping that is done on every script line. The rfile or wfile
argument must terminate the command line and must be preceded
by exactly one blank. Each wfile is created before processing
begins. There can be at most 10 distinct wfile arguments.

(1) a \
text Append. Place text on the output before reading the

next input line.
(2) b label Branch to the: command bearing the label. If label is

empty, branch to the end of the script.
(2) c\
text

(2) d
(2) D

(2) g

(2) G

(2) h

(2) H

(1) i\
text
(2) I

(2) n

(2) N

(2) P
(2) P

(1) q

Change. Delete the pattern space. With 0 or 1
address or at the end of a2-address range, place text
on the output. Start the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through
the first new-line. Start the next cycle.
Replace the contents of the pattern space by the con­
tents of the hold space.
Append the contents of the hold space to the pattern
space.
Replace the contents of the hold space by the contents
of the pattern space.
Append the contents of the pattern space to the hold
space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an
unambiguous form. Non-printing characters are
spelled in two-digit ASCII and long lines are folded.
Copy the pattern space to the standard output.
Replace the pattern space with the next line of input.
Append the next line of input to the pattern space
with an embedded new-line. (The current line number
changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through
the first new-line to the standard output.
Quit. Branch to the end of the script. Do hot start a
new cycle.

(2) r rfZ"le Read the contents of rfile. Place them on the output
before reading the next input line.

(2) s/ regular expresst"on / replacement / flags
Substitute the replacement string for instances of the
regular expressz"on in the pattern space. Any charac­
ter may be used instead of /. For a fuller description
see ed(I). Flags is zero or more of:

- 2 -

SED (1)

g

p

w wfa"le

SED (1)

Global. Substitute for all nonoverlap­
ping instances of the regular expres­
s,"on rather than just the first one.
Print the pattern space if a replace­
ment was made.

Write. Append the pattern space to
wfile if a replacement was made.

(2) t label Test. Branch to the: command bearing the label if
any substitutions have been made since the most
recent reading of an input line or execution of a t. If
label is empty, branch to the end of the script.

(2) w wf£le
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.
(2) y / str£ngl / string 2 /

Transform. Replace all occurrences of characters in
stringl with the corresponding character in stra"ng13.
The lengths of stringl and stn"ng13 must be equal.

(2)! function
Don't. Apply the function (or group, if function is {)
only to lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for band

(1)=

(2) {

(0)

t commands to branch to.
Place the current line number on the standard output
as a line.
Execute the following commands through a matching}
only when the pattern space is selected.
An empty command is ignored.

SEE ALSO
awk(1), ed(1), grep(1).

- 3-

SETPRINT (1) SETPRINT (1)

NAME
setprint - send a different page length/width to an LP line printer

SYNOPSIS
setprint lines cols

DESCRIPTION
Lp uses a default page length (66 lines) and page width (132
columns) for printing. If the file to be printed has more than 132
columns, all characters beyond 132 would either be truncated or
the printer would continue to print them all on the last character
position.

Setprz'nt allows you to change the line and column size parameters
to whatever your printer can handle. However, setprz'nt can only
be used with a parallel line printer, and that printer must be
online. Otherwise an I/0 error will occur.

EXAMPLE
To change the page width to to 150 columns, use setpnOnt as fol­
lows:

setprint 66 150

Use the following format to set the page width back to 132
columns:

setprint 66 132

- 1 -

SH (1)

NAME

SH(1)

sh, rsh - shell, the standard/restricted command programming
language

SYNOPSIS
sh [-ceiknrstuvx 1 [args 1
rsh [-ceiknrstuvx 1 [args 1

DESCRIPTION
Sh is a command programming language that executes commands
read from a terminal or a file. Rsh is a restricted version of the
standard command interpreter sh; it is used to set up login names
and execution environments whose capabilities are more controlled
than those of the standard shell. See Invocation below for the
meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by
blanks (a biank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked com­
mand. The command name is passed as argument 0 (see exec(2)).
The value of a simple-command is its exit status if it terminates
normally, or (octal) 200+status if it terminates abnormally (see
signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by 1
(or, for historical compatibility, by"). The standard output of
each command but the last is connected by a pipe(2) to the stan­
dard input of the next command. Each command is run as a
separate process; the shell waits for the last command to ter­
minate.

A list is a sequence of one or more pipelines separated by;, &,
&&, or 1 I, and optionally terminated by ; or &. Of these four
symbols, ; and & have equal precedence, which is lower than that
of && and I I· The symbols && and I 1 also have equal pre­
cedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execu­
tion of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (I I) causes the Ust following
it to be executed only if the preceding pipeline returns a zero
(non-zero) exit status. An arbitrary number of new-lines may
appear in a. list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that
of the last simple-command executed in the command.

for name [in word . . . 1 do list done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word . .. is
omitted, then the for command executes the do list once
for each positional parameter that is set (see Parameter
Substitution below). Execution ends when there are no
more words in the list.

- 1 -

SHe 1) SH(I)

case word in [pattern [I pattern 1 ...) l£st ;; 1 ... esac
A case command executes the It"st associated with the
first pattern that matches word. The form of the pat­
terns is the same as that used for file-name generation (see
File Name Generation below).

if list then list [elif list then list 1 ... [else Ust 1 fi
The list following if is executed and, if it returns a zero
exit status, the list following the first then is executed.
Otherwise, the list following elif is executed and, if its
value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero
exit status.

while list do list done

(list)

{list;}

A while command repeatedly executes the while list and,
if the exit status of the last command in the list is zero,
executes the do list; otherwise the loop terminates. If no
commands in the do list are executed, then the while
command returns a zero exit status; until may be used in
place of while to negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.

The following words are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do
done { }

Comments.
A word beginning with # causes that word and all the following
characters up to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave
accents (, ,) may be used as part or all of a word; trailing new­
lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters.
Positional parameters may be assigned values by set. Variables
may be set by writing:

name =value [name =value 1 ...

Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores
(a name), a digit, or any of the characters *, @, #, ?, -,
$, and!. The value, if any, of the parameter is substi­
tuted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be
interpreted as part of its name. A name must begin with
a letter or underscore. If parameter is a digit then it is a

- 2 -

SH (I) SH (I)

positional parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument
zero when the shell is invoked.

${parameter:- word}
If parameter is set and is non-null then substitute its
value; otherwise substitute word.

${parameter:=word}
If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional
parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its
value; otherwise, print word and exit from the shell. If
word is omitted, then the message "parameter null or not
set II is printed.

${parameter:+word}
If parameter is set and is non-null then substitute word;
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is exe­
cuted only if d is not set or is null:

echo ${ d:- 'pwd , }
/

If the colon (:) is omitted from the above expressions, then the
shell only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

$

Flags supplied to the shell on invocation or by the
set command.
The decimal value returned by the last synchro­
nously executed command.
The process number of this shell.
The process number of the last background com­
mand invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd

command.
PATH The search path for commands (see Execution

below). The user may not change PATH if exe­
cuting under rsh.

CDPATH
The search path for the cd command.

MAIL If this variable is set to the name of a mail file,

PSI
PS2
IFS

then the shell informs the user of the arrival of
mail in the specified file.
Primary prompt string, by default "$ ".
Secondary prompt string, by default" > II

Internal field separators, normally space, tab,
and new-line.

- 3-

SH (1) SH(1)

The shell gives default values to PATH, PSI, PS2, and IFS, while
HOME and MAIL are not set at all by the shell (although HOME
is set by login(lM)).

Blank Interpretation.
After parameter and command substitution, the results of substi­
tution are scanned for internal field separator characters (those
found in IFS) and split into distinct arguments where such charac­
ters are found. Explicit null arguments ("" or , ,) are retained.
Implicit null arguments (those resulting from parameters that
have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the
characters *, ?, and [. If one of these characters appears then the
word is regarded as a pattern. The word is replaced with alpha­
betically sorted file names that match the pattern. If no file name
is found that matches the pattern, then the word is left
unchanged. The character • at the start of a file name or immedi­
ately following a /, as well as the character / itself, must be
matched explicitly.

Quoting.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A

pair of characters separated by - matches any
character lexically between the pair, inclusive. If
the first character following the opening "[" is a
"!" then any character not enclosed is matched.

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All charac­
ters enclosed between a pair of single quote marks (, ,), except a
siIlgle quote, are quoted. Inside double quote marks (" "), parame­
ter and command substitution occurs and \ quotes the characters
\, " ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@"
is equivalent to "$1" "$2"

Prompting.
When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secon­
dary prompt (i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may pre­
cede or follow a command and are not passed on to the invoked
command; substitution occurs before word or digz"t is used:

- 4 -

SH(1)

<word
>word

»word

SH(1)

Use file word as standard input (file descriptor 0).
Use file word as standard output (file descriptor
1). If the file does not exist then it is created; oth­
erwise, it is truncated to zero length.
Use file word as standard output. If the file exists
then output is appended to it (by first seeking to
the end-of-file); otherwise, the file is created.

«[-]word The shell input is read up to a line that is the
same as word, or to an end-of-file. The resulting
document becomes the standard input. If any
character of word is quoted, then no interpretation
is placed upon the characters of the document;
otherwise, parameter and command substitution
occurs, (unescaped) \new-line is ignored, and \
must be used to quote the characters \, $, " and
the first character of word. If - is appended to
«, then all leading tabs are stripped from word

<&digit

<&-

and from the document.
The standard input is duplicated from file descrip­
tor digit (see dup(2)). Similarly for the standard
output using >.
The standard input is closed. Similarly for the
standard output using>.

If one of the above is preceded by a digit, then the file descriptor
created is that specified by the digit (instead of the default 0 or 1).
For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input
for the command is the empty file / dey / null. Otherwise, the
environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment.
The environment (see environ(5)) is a list of name-value pairs
that is passed to an executed program in the same way as a nor­
mal argument list. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the correspond­
ing value. Executed commands inherit the same environment. If
the user modifies the values of these parameters or creates new
ones, none of these affects the environment unless the export
command is used to bind the shell's parameter to the environ­
ment. The environment seen by any executed command is thus
composed of any unmodified name-value pairs originally inherited
by the shell, plus any modifications or additions, all of which must
be noted in export commands.

The environment for any sz"mple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

- 5 -

SH(I) SH (1)

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the
environment, even if they occur after the command name. The
following first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

Signals_
The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have
the values inherited by the shell from its parent, with the excep­
tion of signal 11 (but see also the trap command below).

Execution_
Each time a command is executed, the above substitutions are
carried out. Except for the Special Commands listed below, a new
process is created and an attempt is made to execute the com­
mand via exec(2).

The shell parameter PATH defines the search path for the direc­
tory containing the command. Alternative directory names are
separated by a colon (:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and /usr /bin, in that
order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the
command name contains a / then the search path is not used;
such commands will not be executed by the restricted shell. Oth­
erwise, each directory in the path is searched for an executable
file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A sub-shell (i.e.,
a separate process) is spawned to read it. A parenthesized com­
mand is also executed in a sub-shell.

Special Commands_
The following commands are executed in the shell process and,
except as specified, no input/output redirection is permitted for
such commands:

No effect; the command does nothing. A zero exit code is
returned .

• file Read and execute commands from file and return. The
search path specified by PATH is used to find the direc­
tory containing file.

break [n I
Exit from the enclosing for or while loop, if any. If n is
specified then break n levels.

continue [n I
Resume the next iteration of the enclosing for or while
loop. If n is specified then resume at the n-th enclosing
loop.

- 6 -

SH(1) SH(l)

cd [arg 1
Change the current directory to arg. The shell parameter
HOME is the default arg. The shell parameter CDPATH
defines the search path for the directory containing arg.
Alternative directory names are separated by a colon (:).
The default path is <null> (specifying the current direc­
tory). Note that the current directory is specified by a
null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else
in the path list. If arg begins with a / then the search
path is not used. Otherwise, each directory in the path is
searched for arg. The cd command may not be executed
by rsh.

eval [arg ... 1
The arguments are read as input to the shell and the
resulting command(s) executed.

exec [arg ... 1
The command specified by the arguments is executed in
place of this shell without creating a new process.
Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be
modified.

exit [n 1
Causes a shell to exit with the exit status specified by n.
If n is omitted then the exit status is that of the last com­
mand executed (an end-of-file will also cause the shell to
exit.)

export [name . .. 1
The given names are marked for automatic export to the
environment of subsequently-executed commands. If no
arguments are given, then a list of all names that are
exported in this shell is printed.

newgrp [arg . .. 1
Equivalent to exec newgrp arg

read [name . .. 1
One line is read from the standard input and the first
word is assigned to the first name, the second word to the
second name, etc., with leftover words assigned to the last
name. The return code is 0 unless an end-of-file is
encountered.

readonly [name .. , 1
The given names are marked readonly and the values of
these name s may not be changed by subsequent assign­
ment. If no arguments are given, then a list of all
readonly names is printed.

set [--ekntuvx [arg . .. 1 1
-e Exit immediately if a command exits with a non­

zero exit status.
-k All keyword arguments are placed in the environ­

ment for a command, not just those that precede
the command name.

-n Read commands but do not execute them.

- 7 -

SH (1) SH (1)

-t Exit after reading and executing one command.
-u Treat unset variables as an error when substitut-

ing.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are

executed.
Do not change any of the flags; useful in setting
$1 to -.

Using + rather than - causes these flags to be turned off.
These flags can also be used upon invocation of the shell.
The current set of flags may be found in $-. The remain­
ing arguments are positional parameters and are assigned,
in order, to $1, $2, .. " If no arguments are given then
the values of all names are printed.

shift [n 1

test

times

The positional parameters from $0+1 .,. are renamed
$1 If n is not given, it is assumed to be 1.

Evaluate conditional expressions. See test(l) for usage and
description.

Print the accumulated user and system times for processes
run from the shell.

trap [arg 1 [n 1 ...
arg is a command to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when
the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. An attempt to
trap on signal 11 (memory fault) produces an error. If arg
is absent then all trap(s) n are reset to their original
values. If arg is the null string then this signal is ignored
by the shell and by the commands it invokes. If n is 0
then the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of
commands associated with each signal number.

ulimit [-fp 1 [n 1
imposes a size limit of n
-f imposes a size limit of n blocks on files written by

child processes (files of any size may be read).
With no argument, the current limit is printed.

-p changes the pipe size to n (UNIX/RT only).
If no option is given, -f is assumed.

umask [nnn 1
The user file-creation mask is set to nnn (see umask(2)).
If nnn is omitted, the current value of the mask is
printed.

wait [n 1
Wait for the specified process and report its termination
status. If n is not given then all currently active child
processes are waited for and the return code is zero.

- 8-

SH (1) SH(1)

Invocation.
If the shell is invoked through exec (2) and the first character of
argument zero is ,commands are initially read from
/ etc/profile and then from $HOME/ .profile, if such files exist.
Thereafter, commands are read as described below, which is also
the case when the shell is invoked as /bin/sh. The flags below
are interpreted by the shell on invocation only; Note that unless
the -c or -s flag is specified, the first argument is assumed to be
the name of a file containing commands, and the remaining argu­
ments are passed as positional parameters to that command file:

-c strz'ng If the -c flag is present then commands are read from
strz'ng.

-s If the -s flag is present or if no arguments remain then
commands are read from the standard input. Any
remaining arguments specify the positional parameters.
Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output
are attached to a terminal, then this shell is £nterac­
tt've. In this case TERMINATE is ignored (so that kill
o does not kill an interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible). In
all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set
command above.

Rsh Only.
Rsh is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sh, except that
the following are disallowed:

changing directory (see cd (1))}
setting the value of $PATH,
specifying path or command names containing /,
redirecting output (> and> >).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to the
end-user shell procedures that have access to the full power of the
standard shell, while imposing a limited menu of commands; this
scheme assumes that the end-user does not nave write and execute
permissions in the same directory.

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed
setup actions and leaving the user in an appropriate directory
(probably not the login directory).

The system administrator often sets up a directory of commands
(i.e., /usr/rbin) that can be safely invoked by rsh. Some sys­
tems also provide a restricted editor red.

- 9 -

SH(1) SH(l)

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell
to return a non-zero exit status. If the shell is being used non­
interactively then execution of the shell file is abandoned. Other­
wise, the shell returns the exit status of the last command exe­
cuted (see also the exit command above).

/etc/profile
$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO

BUGS

cd(l), env(l), login(lM), newgrp(l), test(l), umask(l), dup(2),
exec(2), fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2),
a.out(4), profile(4), environ(5).

The command readonly (without arguments) produces the same
output as the command export.
If « is used to provide standard input to an asynchronous pro­
cess invoked by &, the shell gets mixed up about naming the
input document; a garbage file /tmp/sh* is created and the shell
complains about not being able to find that file by another name.

- 10 -

SHFORM(l) (AT&T UNIX PC only) SHFORM(l)

NAME
shform - displays menus and forms and returns user input to
Bourne Shell procedures.

SYNOPSIS
RET = 'shform [-u] formname'

DESCRIPTION
The shform process displays a menu or form, waits for user input,
and returns the result to the shell procedure.

F ormname is a text document, called a form description file, that
describes the menu or form to be displayed. Entries in the file use
a keyword = value syntax. (The form and menu keywords are
described below.) The file must be located in the /usr/lz"b/ua
directory. To insert a comment in the file, start the line with a
pound sign (#).
The value returned by the file is stored in the shell variable RET
as a list of words separated by spaces. If an error occurs, then $?
will contain an error code.

-u causes shform to place its menu or form in the current window,
resizing it appropriately to fix the menu or form. This option is
recommended.

Shform returns the following exit codes:

0- AOK
1 - Argument error
2 - Out of memory (malloc failed)
3 - Internal table overflow
4 - Syntax error in form description file

The words in $RET are as follows:

word 1 = Name of terminating key

if form, words 2 - n = Values of the form's fields

if menu, word 2 = Name of selected menu item

if multiselect menu, words 2 - n = Name of selected
menu items

Form Definition Keywords
Form = form name

Flags the start of a form. It is followed by a series of field
definitions. The form name specified here is used as the
title of the form. Only one Form keyword can be used in
the file.

Name = field name
Follows a Form keyword and starts a field definition. The
field name specified here is used as the prompt for the
field. The field name definition is followed by field attri­
bute definitions:

Prompt = prompt string
Displayed on the prompt line when the field is the current
field.

- 1 -

SHFORM(l) (AT&T UNIX PC only) SHFORM(l)

Frow = number
Defines the row in the form where the current field
displays.

Ncol = number.
Defines the column in the form where the field name
displays.

Fcol = number
Defines the column In the form where the field value
displays.

Flen = number
Defines the maximum length of the field value, in
columns.

Value = initial field value
Defines the initial contents (default value) for the field.

Rmenu = menu name
If the field has an associated menu of options, this key­
word is included. The menu name must be defined later
in the file with the Menu keyword (see below).

Menuonly
If this keyword is present then user editing of the field is
forbidden and any key which is typed will cause the asso­
ciated menu to display.

Menu Definition Keywords
Menu = menu name

Begins a menu definition. When no form is defined,
shform displays a menu instead of a form. In this case,
only the first defined menu is displayed. If a form is
defined, then the only menus displayed are those refer­
enced in the form fields (via the Rmenu keyword, defined
above). The Menu keyword is followed by a series of
menu attribute definitions.

Prompt = prompt string
The prompt string is displayed on the prompt line when
the menu is displayed.

Rows = number
Defines the number of rows in the menu display.

Columns = number
Defines the number of columns in the menu display. If
neither Rows nor Columns is defined, then the built-in
menu heuristic is used for determining the number of rows
and columns in the menu.

Multiple
If this keyword is present, the menu is multi-select. Oth­
erwise, the menu is a single select menu.

Name = item name
Follows the menu attributes and specifies the name
displayed in the menu. This keyword is returned to the
caller when this item is selected.

- 2 -

SHFORM(l) (AT&T UNIX PC only) SHFORM(l)

SEE ALSO
menu(3T), form(3T), tam(3T).

- 3-

SIZE (1) SIZE (1)

NAME
size - print section sizes of common object files

SYNOPSIS
size [-0] [-x] [-V] files

DESCRIPTION
The s£ze command produces section size information for each sec­
tion in the common object files. The size of the text, data, bss
(uninitialized data), and shared library sections are printed along
with the total size of the object file. If an archive file is input to
the size command the information for all archive members is
displayed.

Numbers will be printed in decimal unless either the -0 or the -x
option is used, in which case they will be printed in octal or in
hexadecimal, respectively.

The -V flag will supply the version information on the size com­
mand.

SEE ALSO
as(l), cc(l), ld(l), a.out(4), ar(4).

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

- 1 -

SLEEP(I)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP (1)

Sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm(2), sleep(3C).

BUGS
Time must be less than 2147483647 seconds.

- 1 -

SORT(I) SORT(I)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmubdfinrtx] [+posl [-pos2]] ••. [-0 output] [names]

DESCRIPTION
Sort sorts lines of all the named files together and writes the
result on the standard output. The name - means the standard
input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexico­
graphic by bytes in machine collating sequence. The ordering is
affected globally by the following options, one or more of which
may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters, digits and blanks are
significant in comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non­
numeric comparisons.

n An initial numeric string, consisting of optional blanks,
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. Option n
implies option b.

r Reverse the sense of comparisons.

tx "Tab character" separating fields is x.

The notation +post -pos2 restricts a sort key to a field begin­
ning at post and ending just before pos2. Post and pos2 each
have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the
beginning of the line and n tells a number of characters to skip
further. If any flags are present they override all the global order­
ing options for this key. If the b option is in effect n is counted
from the first non-blank in the field; b is attached independently
to pos2. A missing .n means .0; a missing -pos2 means the end
of the line. Under the -tx option, fields are strings separated by
x; otherwise fields are non-empty non-blank strings separated by
blanks.

When there are mUltiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise compare
equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes
and bytes outside keys do not participate in this comparison.

- 1 -

SORT(I) SORT(I)

o The next argument is the name of an output file to use
instead of the standard output. This file may be the same
as one of the inputs.

EXAMPLES

FILES

Print in alphabetical order all the unique spellings in a list of
words (capitalized words differ from uncapitalized):

sort - u +Of +0 list

Print the password file (passwd(4)) sorted by user ill (the third
colon~separated field):

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of
(month-day) entries (the options -urn with just one input file
make the choice of a unique representative from a set of equal
lines predictable):

sort - urn +0 - 1 dates

/usr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(l).

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble con­
ditions and for disorder discovered under option -c.

Very long lines are silently truncated.

- 2 -

SPELL (1) SPELL (1)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-y 1 [-b 1 [-x 1 [-1 1 [+local_file 1 [files 1
/ usr /lib/ spell/hashmake

/usr/lib/spell/spellin n

/ usr / lib / spell/hashcheck spellin~list

DESCRIPTION
Spell collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable
(by applying certain inflections, prefixes, and/or suffixes) from
words in the spelling list are printed on the standard output. If
no files are named, words are collected from the standard input.

Spell ignores most nroff(1), tbl(1), and eqn(l) constructions.

Under the -y option, all words not literally in the spelling list are
printed, and plausible derivations from the words in the spelling
list are indicated.

Under the -b option, British spelling is checked. Besides prefer­
ring centre, colour, programme, spedal£ty, traveled, etc., this
option insists upon -;se in words like standardise, Fowler and the
OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for
each word.

By default, spell (like deroff(1)) follows chains of included files
(.so and .nx troff requests), unless the names of such included files
begin with /usr/lib. Under the -1 option, spell will follow the
chains of all included files.

Under the +locaCfile option, words found in local.Jile are
removed from speWs output. Local.Jile is the name of a user­
provided file that contains a sorted list of words, one per line.
With this option, the user can specify a set of words that are
correct spellings (in addition to sp ell's own spelling list) for each
job.

The spelling list is based on many sources, and while more hapha­
zard than an ordinary dictionary, is also more effective with
respect to proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indi­
cated below with their default settings (see FILES). Copies of all
output are accumulated in the history file. The stop list filters out
misspellings (e.g., thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by
spell:

hashmake Reads a list of words from the standard input and
writes the corresponding nine-digit hash code on the

- 1 -

SPELL(l) SPELL(l)

FILES

standard output.

speUin Reads n hash codes from the standard input and
writes a compressed spelling list on the standard
output.

hashcheck Reads a compressed spelling_list and recreates the
nine-digit hash codes for all the words in it; it writes
these codes on the standard output.

D_SPELL=/usr/lib/spell/hlist[ab]

S_SPELL=/usr/lib/spell/hstop
H_SPELL= /usr /lib /spell/spellhist
/usr /lib/spell/spellprog

hashed spelling lists, Ameri­
can & British
hashed stop list
history file
program

SEE ALSO

BUGS

deroff(l), eqn(l), sed(1), sort(l), tbl(l), tee(l).

The spelling list's coverage is uneven; new installations will prob­
ably wish to monitor the output for several months .to gather local
additions; typically, these are kept in a separate local file that is
added to the hashed spelling_list via spellin.
The British spelling feature was done by an American.

- 2 -

SPLIT (1) SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000 lines)
onto a set of output files. The name of the first output file is
name with aa appended, and so on lexicographically, up to zz (a
maximum of 676 files). Name cannot be longer than 12 charac­
ters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the stan­
dard input file is used.

SEE ALSO
bfs(1), csplit(1).

- 1 -

STRIP (1) STRIP (1)

NAME
strip - strip symbol and line number information from a common
object file

SYNOPSIS
strip [-1] [-x] [-r] [-s] [-V] file-names

DESCRIPTION

FILES

The strip command strips the symbol table and line number infor­
mation from common object files, including archives. Once this
has been done, no symbolic debugging access will be available for
that file; therefore, this command is normally run only on produc­
tion modules that have been debugged and tested.

The amount of information stripped from the symbol table can be
controlled by using any of the following options:

-1 Strip line number information only; do not strip any
symbol table information.

-x Do not strip static or external symbol information.

-r Reset the relocation indexes into the symbol table.

-s Reset the line number indexes into the symbol table (do
not remove). reset the relocation indexes into the sym­
bol table.

-V Version of strip command executing.

If there are any relocation entries in the object file and any sym­
bol table information is to be stripped, strip will complain and ter­
minate without stripping file-name unless the -r flag is used.

If the strip command is executed on a common archive file (see
ar(4)) the archive symbol table will be removed. The archive
symbol table must be restored by executing the ar(l) command
with the s option before the archive can be link edited by the
ld(i) command. Strip(l) will instruct the user with appropriate
warning messages when this situation arises.

The purpose of this command is to reduce the file storage over­
head taken by the object file.

jusr jtmpjstrp??????

SEE ALSO
as(l), cC(l), ld(l), ar(4), a.out(4).

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag
is not used, the symbol table information cannot be
stripped.

- 1 -

STTY(l) STTY(1)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a 1 [-g 1 [options 1

DESCRIPTION
Stty sets certain terminal I/0 options for the device that is the
current standard input; without arguments, it reports the settings
of certain options; with the -a option, it reports all of the option
settings; with the -g option, it reports current settings in a form
that can be used as an argument to another stty command.
Detailed information about the modes listed in the first five groups
below may be found in termio(7) for asynchronous lines. Options
in the last group are implemented using options in the previous
groups. Note that many combinations of options make no sense,
but no sanity checking is performed. The options are selected
from the following:

Con trol Modes
paren b (-paren b) enable (disable) parity generation and

detection.
parodd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size (see termio(7)).
o hang up phone line immediately.
50 75 110 134 150 200 300 600 1200
1800 2400 4800 9600 exta extb

hupcl (-hupcl)

hup (-hup)
estopb (-cstopb)
eread (-eread)
eloeal (-cloeal)

Input Modes
ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)

inpek (-inpek)
istrip (-istrip)

inler (-inler)
igner (-igner)
iernl (-iernl)
iucle (-iucle)

Set terminal baud rate to the number
given, if possible. (All speeds are not sup­
ported by all hardware interfaces.)
hang up (do not hang up) DATA-PHONE
connection on last close.
same as hupcl (-hupcl).
use two (one) stop bits per character.
enable (disable) the receiver.
assume a line without (with) modem con­
trol.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see ter­
mio(7)).
enable (disable) input parity checking.
strip (do not strip) input characters to
seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) upper-case alphabetics to
lower case on input.

- 1 -

STTY(1)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)
oernl (-oernl)
onoer (-onoer)
onlret (-onlret)

ofill (-orill)
of del (-of del)
erO er 1 er2 er3

nlO nil

STTY(1)

enable (disable) START/STOP output con­
trol. Output is stopped by sending an
ASCII DC3 and started by sending an ASCII
DC1.
allow any charaCter (only DCI) to restart
output.
request that the system send (not send)
START /STOP characters when the input
queue is nearly empty /ful!.

post-process output (do not post-process
output; ignore all other output modes).
map (do not map) lower-case alphabetics to
upper case on output.
map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not per­
form) the CR function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see
termio (7)).
select style of delay for line-feeds (see ter­
mio(7)).

tabO tabl tab2 tab3

bsO bsl

ffO ftl

vtO vtl

Local Modes
isig (-isig)

ieanon (-ieanon)

xease (-xease)

eeho (-eeho)

eehoe (-eehoe)

eehok (-eehok)

select style of delay for horizontal tabs (see
termio(7).
select style of delay for backspaces (see ter­
mio(7)).
select style of delay for form-feeds (see ter­
mio(7)).
select style of delay for vertical tabs (see
termio (7)).

enable (disable) the checking of characters
against the special control characters INTR
and QUIT.
enable (disable) canonical input (ERASE
and KILL processing).
canonical (unprocessed) upper/lower-case
presentation.
echo back (do not echo back) every charac­
ter typed.
echo (do not echo) ERASE character as a
backspace-space-backspace string. Note:
this mode will erase the ERASEed character
on many CRT terminals; however, it does
'not keep track of column position and, as a
result, may be confusing on escaped charac­
ters, tabs, and backspaces.
echo (do not echo) NL after KILL character.

- 2 -

STTY(1)

lfke (-lfke)
eehonl (-eehonl)
noflsh (-noflsh)
stwrap (-stwrap)

stflush (-stflush)

stappl (-stappl)

Control Assignments
control-character c

line ,.
Combination Modes

STTY(1)

the same as eehok (-eehok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR or QUIT.
disable (enable) truncation of lines longer
than 79 characters on a synchronous line.
enable (disable) flush on a synchronous line
after every write(2).
use application mode (use line mode) on a
synchronous line.

set control-character to c, where control­
character is erase, kill, intr, quit, eof,
eol, etab, min, or time (etab is used with
-stappl; see termio(7)). If c is preceded
by an (escaped from the shell) caret (A),
then the value used is the corresponding
CTRL character (e.g., ((Ad" is a CTRL-d);
(CAy" is interpreted as DEL and ((A_" is
interpreted as undefined.
set line discipline to i (0 < i < 127).

evenp or parity enable parenb and es7.
oddp enable parenb, cs7, and parodd.
-parity, -evenp, or -oddp

disable parenb, and set esS.
raw (-raw or cooked)

nl (-nl)

enable (disable) raw input and output (no
ERASE, KILL, INTR, QUIT, EOT, or output
post processing).
unset (set) iernl, onler. In addition -nl
unsets inler, igner, oernl, and onlret.

lease (-lease) set (unset) xease, iucle, and oleue.
LeASE (-LCASE) same as lease (-lease).
tabs (-tabs or tab3)

ek

sane
term

SEE ALSO
tabs(l), ioctl(2).

preserve (expand to spaces) tabs when
printing.
reset ERASE and KILL characters back to
normal # and @.

resets all modes to some reasonable values.
set all modes suitable for the terminal type
term, where term is one of tty33, tty37,
vt05, tn300, ti700, or tek.

termio(7) in the UNIX System Admin£strator's Manual.

- 3 -

SU(1) SU (1)

NAME
su - become super-user or another user

SYNOPSIS
su [- I [name [arg . . . I I

DESCRIPTION

FILES

Su allows one to become another user without logging off. The
default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one
is already super-user). If the password is correct, su will execute a
new shell with the user ID set to that of the specified user. To
restore normal user ID privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the
super-user to run shell procedures with restricted privileges (an
arg of the form -c string executes strt"ng via the shell). When
additional arguments are passed, /bin/sh is always used. When
no additional arguments are passed, su uses the shell specified in
the password file.

An initial - flag causes the environment to be changed to the one
that would be expected if the user actually logged in again. This
is done by invoking the shell with an argO of -su causing the
.profile in the home directory of the new user ID to be executed.
Otherwise, the environment is passed along with the possible
exception of $PATH, which is set to
/bin:/etc:/usr /bin:/ usr /local/bin for root. Note that the
.profile can check argO for -sh or -su to determine how it was
invoked.

/etc/passwd
$HOME/ .profile

system's password file
user's profile

SEE ALSO
env(1), login(1M), shU), environ(5).

- 1 -

SUM(1) SUM (1)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r 1 file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file,
and also prints the number of blocks in the file. It is typically
used to look for bad spots, or to validate a file communicated over
some transmission line. The option -r causes an alternate algo­
rithm to be used in computing the checksum.

SEE ALSO
wc(1).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices;
check the block count.

- 1 -

SYNC (1)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (1)

Sync executes the 8ync system primitive. If the system is to be
stopped, 8ync must be called to insure file system integrity. It
will flush all previously unwritten system buffers out to disk, thus
assuring that all file modifications up to that point will be saved.
See 8ync(2) for details.

SEE ALSO
sync(2).

- 1 -

TABS(l) TABS (1)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec 1 [+rnn 1 [- Ttype 1

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab
specification tabspec, after clearing any previous settings. The
user must of course be logged in on a terminal with remotely­
settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave
in a different way than most other terminals for some tab settings:
the first number in a list of tab settings becomes the left marg£n
on a TermiNet terminal. Thus, any list of tab numbers whose
first element is other than 1 causes a margin to be left on a Ter­
miNet, but not on other terminals. A tab list beginning with 1
causes the same effect regardless of terminal type. It is possible to
set a left margin on some other terminals, although in a different
way (see below).

Four types of tab specification are accepted for tabspec:
"canned," repetitive, arbitrary, and file. If no tabspec is given,
the default value is -8, i.e., UNIX "standard" tabs. The lowest
column number is 1. Note that for tabs, column 1 always refers
to the leftmost column on a terminal, even one whose column
markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Gives the name of one of a set of "canned" tabs. The
legal codes and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IDM S/370, first format

-a2 1,10,16,40,72
Assembler, IDM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 m6 s66 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with
more tabs than -c2. This is the recommended format for
COBOL. The appropriate format specification is:

<:t-c3 m6 s66 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PL/I
-s 1,10,55

SNOBOL

- 1 -

TABS(l) TABS(I)

-u 1,12,20,44
UNIY AC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns l+n,
1+2*n, etc. Note that such a setting leaves a left margin
of n columns on TermiNet terminals only. Of particular
importance is the value -8: this represents the UNIX
"standard" tab setting, and is the most likely tab setting
to be found at a terminal. It is required for use with the
nroff -h option for high-speed output. Another special
case is the value -0, implying no tabs at all.

nl,n2, ...
The arbitrary format permits the user to type any chosen
set of numbers, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except
the first one) is preceded by a plus sign, it is taken as an
increment to be added to the previous value. Thus, the
tab lists 1,10,20,30 and 1,10,+10,+10 are considered
identical.

--fUe If the name of a file is given, tabs reads the first line of
the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise
it sets them as -8. This type of specification may be
used to make sure that a tabbed file is printed with
correct tab settings, and would be used with the pr(l)
command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

- Ttype Tabs usually needs to know the type of terminal in order
to set tabs and always needs to know the type to set
margins. Type is a name listed in term(5). If no - T
flag is supplied, tabs searches for the $TERM value in
the environment (see environ(5)). If no type can be
found, tabs tries a sequence that will work for many ter­
minals.

+mn The margin argument may be used for some terminals.
It causes all tabs to be moved over n columns by making
column n+l the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet,
the first value in the tab list should be 1, or the margin
will move even further to the right. The normal (left­
most) margin on most terminals is obtained by +mO.
The margin for most terminals is reset only when the
+m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
£llegal tabs
z"llegal t·ncrement

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in
an arbitrary specification.

- 2 -

TABS(l) TABS(I)

unknown tab code when a "canned" code cannot be found.
can't open if -- file option used, and file can't be

opened.
file indirection if --file option used and the specification in

that file points to yet another file. Indirec­
tion of this form is not permitted.

SEE ALSO

BUGS
nroff(1), environ(5), term(5).

There is no consistency among different terminals regarding ways
of clearing tabs and setting the left margin.
It is generally impossible to usefully change the left margin
without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence),
but is willing to set 40.

- 3-

TAIL(l) TAIL (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±[number][Ihc[f]]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or
-number from the end of the input (if number is null, the value
10 is assumed). Number is counted in units of lines, blocks, or
characters, according to the appended option I, h, or c. When no
units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the
program will not terminate after the line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a
second and then attempts to read and copy further records from
the input file. Thus it may be used to monitor the growth of a file
that is being written by some other process. For example, the
command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines
that are appended to fred between the time tail is initiated and
killed. Asap.other example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any
lines that are appended to fred between the time tail is initiated
and killed.

SEE ALSO
dd(l).

BUGS
Tails relative to the end of the file are treasured up in a buffer,
and thus are limited in length. Various kinds of anomalous
behavior may happen with character special files.

- 1 -

TAR (1) TAR (1)

NAME
tar - tape file archiver

SYNOPSIS
tar [key 1 [files 1

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are con­
trolled by the key argument. The key is a string of characters
containing at most one function letter and possibly one or more
function modifiers. Other arguments to the command are files (or
directory names) specifying which files are to be dumped or
restored. In all cases, appearance of a directory name refers to the
files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following
letters:

r The named files are written on the end of the tape. The
c function implies this function.

x The named files are extracted from the tape. If a named
file matches a directory whose contents had been written
onto the tape, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if
possible). If no files argument is given, the entire con­
tent of the tape is extracted. Note that if several files
with the same name are on the tape, the last one
overwrites all earlier ones.

t The names of the specified files are listed each time that
they occur on the tape. If no files argument is given, all
the names on the tape are listed.

u The named files are added to the tape if they are not
already there, or have been modified since last written on
that tape.

c Create a new tape; writing begins at the beginning of the
tape, instead of after the last file. This command implies
the r function.

The following characters may be used in addition to the letter
that selects the desired function:

0, ... ,7 This modifier selects the drive on which the tape is
mounted. The default is 1.

v Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats,
preceded by the function letter. With the t function, v
gives more information about the tape entries than just
the name.

w causes tar to print the action to be taken, followed by
the name of the file, and then wait for the user's
confirmation. If a word beginning with y is given, the
action is performed. Any other input means "no".

- 1 -

TAR (1) TAR (1)

FILES

f causes tar to use the next argument as the name of the
archive instead of / dey /mt? If the name of the file is
-:-, tar writes to the standard output or reads from the
standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline. Tar can also be
used to move hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b causes tar to use the next argument as the blocking fac­
tor for tape records. The default is 1, the maximum is
20. This option should only be used with raw magnetic
tape archives (see r above). The block size is determined
automatically when reading tapes (key letters x and t).
tells tar to complain if it cannot resolve all of the links
to the files being dumped. If I is not specified, no error
messages are printed.

m tells tar not to restore the modification times. The
modification time of the file will be the time· of extrac­
tion.

/dev/mt?
/tmp/tar*

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if not enough memory is available to hold the link
tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to
be updated. The current magnetic tape driver cannot backspace
raw magnetic tape. If the archive is on a disk file, the b option
should not be used at all, because updating an archive stored on
disk can destroy it.
The current limit on file-name length is 100 characters.

- 2 ~

TBL(l) TBL(l)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [-TX 1 [files 1

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff or troff (not
included on the UNIX PC). The input files are copied to the stan­
dard output, except for lines between .TS and .TE command lines,
which are assumed to describe tables and are re-formatted by tbl.
(The .TS and .TE command lines are not altered by tbl) .

. TS is followed by global options. The available global options
are:

center center the table (default is left-adjust);
expand make the table as wide as the current line

length;
box enclose the table in a box;
doublebox

enclose the table in a double box;
allbox enclose each item of the table in a box;
tab (x) use the character x instead of a tab to

separate items in a line of input data.

The global options, if any, are terminated with a semi-colon (;).

N ext come lines describing the format of each line of the table.
Each such format line describes one line of the actual table, except
that the last format line (which must end with a period) describes
all remaining lines of the table. Each column of each line of the
table is described by a single key-letter, optionally followed by
specifiers that determine the font and point size of the correspond­
ing item, that indicate where vertical bars are to appear between
columns, that determine column width, inter-column spacing, etc.
The available key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units posi­

tions of numbers are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left­

adjust all other lines in this column with respect
to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respec­
tively; the character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data
for the table, followed finally by .TE. Within such data lines,
data items are normally separated by tab characters.

- 1 -

TBL (1) TBL (1)

If a data line consists of only _ or =, a single or double line,
respectively, is drawn across the table at that point; if a sz"ngle
item in a data line consists of only _ or =, then that item is
replaced by a single or double line.

Full details of all these and other features of tbl are given in the
reference manual cited below.

The - TX option forces tbl to use only full vertical line motions,
making the output more suitable for devices that cannot generate
partial vertical line motions (e.g., line printers).

If no file names are given as arguments (or if - is specified as the
last argument), tbl reads the standard input, so it may be used as
a filter. When it is used with eqn(l) or neqn, tbl should come
first to minimize the volume of data passed through pipes.

EXAMPLE
If we let -+ represent a tab (which should be typed as a genuine
tab), then the input:

yields:

.TS
center box
cB s s
cI I cI S

A Icc
I Inn.
Household Population

Town-+Households
-+Number-+Size

Bedminster-+ 789-+3.26
Bernards Twp.-+3087-+3.74
Bernardsville-+2018-+3.30
Bound Brook-+3425-+3.04
Bridgewater-+ 7897 -+3.81
Far Hills-+240-+3.19
.TE

Household Population

Town Households
Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

SEE ALSO
TBL-A Program to Format Tables in the UNIX System Document
Processing Guide.
cw(1), eqn(l), mm(1), nroff(l), mm(5).

- 2 -

TBL (1) TBL (1)

BUGS
See BUGS under nroff(l).

- 3-

TC (1) TC (1)

NAME
tc - phototypesetter simulator

SYNOPSIS
tc [-t 1 [-sn 1 [-pI 1 [file 1

DESCRIPTION
Tc interprets its input (standard input default) as device codes for
a Wang Laboratories, Inc. C/A/T phototypesetter. The standard
output of tc i$ intended for a Tektronix 4014 terminal with ASCII
and APL character sets. The sixteen typesetter sizes are mapped
into the 4014's four sizes; the entire TROFF character set is drawn
using the 4014's character generator, with overstruck combina­
tions where necessary. Typical usage is:

troff - t files I tc

At the end of each page, tc waits for a new-line (e:rnpty line) from
the keyboard before continuing on to the next page. In this wait
state, the command e will suppress the screen erase before the
next page; sn will cause the next n pages to be skipped; and !cmd
will send cmd to the shell.

The command line options are:

-t Don't wait between pages (for directing output into a file).

-sn Skip the first n pages.

-pl Set page length to l; l may include the scale factors p
(points), i (inches), c (centimeters), and P (picas); default
is picas.

SEE ALSO
4014(1), sh(1).

BUGS
Font distinctions are lost.

- 1 -

TEE (1) TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i 1 [-& 1 [file 1

DESCRIPTION
Tee transcribes the standard input to the standard output and
makes copies in the files. The -i option ignores interrupts; the
-& option causes the output to be appended to the files rather
than overwriting them.

- 1 -

TEST (1) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns
a zero (true) exit status; otherwise, a non-zero (false) exit status is
returned; test also returns a non-zero exit status if there are no
arguments. The following primitives are used to construct expr:

-r file true if file exists and is readable.

-w file

-x b'le

-f file

-d file

-c file

-b file

-p file

-u file

-g file

-k file

-8 file

-t [fildes]

-z s1

-n s1

81 = 82

s1 != s2

s1

n1 -eq n2

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal
device.

true if the length of string 81 is zero.

true if the length of the string 81 is non-zero.

true if strings 81 and s2 are identical.

true if strings s1 and s2 are not identical.

true if s1 is not the null string.

true if the integers n1 and n2 are algebraically
equal. Any of the comparisons -ne, -gt, -ge, -It,
and -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-0

(expr)

unary negation operator.

binary and operator.

binary or operator (-a has higher precedence than
-0).
parentheses for grouping.

Notice that all the operators and flags are separate arguments to
test. Notice also that parentheses are meaningful to the shell and,
therefore, must be escaped.

- 1 -

TEST (1) TEST (1)

SEE ALSO
find(l)) sh(1).

WARNING
In the second form of the command (i.e.) the one that uses [],
rather than the word test)) the square brackets must be delimited
by blanks.
Some UNIX systems do not recognize the second form of the com­
mand.

- 2 -

TIME (1) TIME (1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system,
and the time spent in execution of the command. Times are
reported in seconds.

The execution time can depend on what kind of memory the pro­
gram happens to land in; the user time in MOS is often half what
it is in core.

The times are printed on standard error.

SEE ALSO
times(2).

- 1 -

TOUCH(t) TOUCH(t)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION
Touch causes the access and modification times of each argument
to be updated. If no time is specified (see date(l)) the current
time is used. The -a and -m options cause touch to update only
the access or modification times respectively (default is -am).
The -c option silently prevents touch from creating the file if it
did not previously exist.

The return code from touch is the number of files for which the
times could not be successfully modified (including files that did
not exist and were not created).

SEE ALSO
date(1), utime(2).

- 1 -

TR(1) TR (1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substi­
tution or deletion of selected characters. Input characters found
in strz'ngl are mapped into the corresponding characters of
strz"ng2. Any combination of the options -cds may be used:

-c Complements the set of characters in str£ngl with
respect to the universe of characters whose ASCII codes
are 001 through 377 octal.

-d Deletes all input characters in strz'ngl .

-s Squeezes all strings of repeated output characters that
are in string2 to single characters.

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[&-z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a* n] Stands for n repetitions of a. If the first digit of n is 0,
n is considered octal; otherwise, n is taken to be decimal.
A zero or missing n is taken to be huge; this facility is
useful for padding strz'ng 2.

The escape character \ may be used as in the shell to remove spe­
cial meaning from any character in a string. In addition, \ fol­
lowed by I, 2, or 3 octal digits stands for the character whose
ASCII code is given by those digits.

The following example creates a list of all the words in fUel one
per line in file 2, where a word is taken to be a maximal string of
alphabetics. The strings are quoted to protect the special charac­
ters from interpretation by the shell; 012 is the ASCII code for
newline.

tr -cs "[A-Z][a-z]" "[\012*]" <file1 >file2

SEE ALSO

BUGS

ed(1), sh(1), ascii(5).

Won't handle ASCII NUL in stn"ngl or strz'ng2; always deletes
NUL from input.

- 1 -

TRUE (1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(I)

True does nothing, successfully. False does nothing, unsuccess­
fully. They are typically used in input to sh(1) such as:

while true
do

command
done

The following UNIX PC files are linked to either true or false:
/bin/mc68k

SEE ALSO
sh(l).

DIAGNOSTICS

/bin/pdplll
/bin/u370
/bin/u3b
/bin/vax

True has exit status zero, false nonzero.

- 1 -

TSET(l) (AT&T UNIX PC only) TSET (1)

NAME
tset - set terminal modes

SYNOPSIS
t8et [options] [-m [ident][test baudrate]:type ...] [type]

DESCRIPTION
Tset causes terminal dependent processing such as setting erase
and kill characters, setting or resetting delays, and the like. It
first determines the type of terminal involved, names for which are
specified by the / etc/termcap data base, and then does necessary
initializations and mode settings. In the case where no argument
types are specified, tset simply reads the terminal type out of the
environment variable TERM and re-initializes the terminal. The
rest of this manual concerns itself with type initialization, done
typically once at login, and options used at initialization time to
determine the terminal type and set up terminal modes.

When used in a startup script .profile it is desirable to give infor­
mation about the types of terminal usually used on terminals
which are not hardwired. These ports are initially identified as
being d£alup or plugboard or arpanet, etc. To specify what termi­
nal type is usually used on these ports -m is followed by the
appropriate port type identifier, an optional baud-rate
specification, and the terminal type to be used if the mapping con­
ditions are satisfied. If more than one mapping is specified, the
first applicable mapping prevails. A missing type identifier
matches all identifiers.

Baud rates are specified as with stty(1), and are compared with
the speed of the diagnostic output (which is almost always the
control terminal). The baud rate test may be any combination of:
>, =, <, @, and !; @ is a synonym for = and! inverts the
sense of the test. To avoid problems with metacharacters, it is
best to place the entire argument to -m within" '" characters.

Thus

tset -m 'dialup>300:adm3a' -m dialup:dw2 -m
'plugboard:?adm3a'

causes the terminal type to be set to an adm8a if the port in use is
a dialup at a speed greater than 300 baud; to a dw2 if the port is
(otherwise) a dialup (i.e. at 300 baud or less). If the type above
begins with a question mark, the user is asked if s/he really wants
that type. A null response means to use that type; otherwise,
another type can be entered which will be used instead. Thus, in
this case, the user will be queried on a plugboard port as to
whether they are using an adm8a. For other ports the port type
will be taken from the / etc/ttytype file or a final, default type
option may be given on the command line not preceded by a -m.

It is often desirable to return the terminal type, as specified by the
-m options, and information about the terminal to a shell's
environment. This can be done using the -8 option; using the
Bourne shell, sh(1):

- 1 -

TSET(1) (AT&T UNIX PC only) TSET (1)

eval 'tset -s options ... '

These commands cause tset to generate as output a sequence of
shell commands which place the variables TERM and TERMCAP
in the environment; see environ(5).

Once the terminal type is known, tset engages in terminal mode
setting. This normally involves sending an initialization sequence
to the terminal and setting the single character erase (and option­
ally the line-kill (full line erase)) characters.

On terminals that can backspace but not overstrike (such as a
CRT), and when the erase character is the default erase character
('#' on standard systems), the erase character is changed to a
Control-H (backspace).

The options are:

-e set the erase character to be the named character c on all
terminals, the default being the backspace character on
the terminal, usually AH.

-k is similar to -e but for the line kill character rather than
the erase character; c defaults to AX (for purely historical
reasons);AU is the preferred setting. No kill processing is
done if -k is not specified.

-I suppresses outputting terminal initialization strings.

-Q suppresses printing the "Erase set to" and "Kill set to"
messages.

-8 S Outputs the strings to be assigned to TERM and
(L.""EIl'I\S~) TERMCAP in the environment rather than commands for

a shell.

FILES
/ etc / ttytype
/etc/termcap

terminal id to type map database
terminal capability database

SEE ALSO

BUGS

NOTES

shU), stty(l), environ(5), ttytype(5), termcap(5)

Should be merged with sttY(I).

For compatibility with earlier versions of tset a number of flags
are accepted whose use is discouraged:

-d type equivalent to -m dialup:type

-p type

-3 type

-E c

equivalent to -m plugboard:type

equivalent to -m arpanet:type

Sets the erase character to c only if the terminal can
backspace.

prints the terminal type on the standard output

-r prints the terminal type on the diagnostic output.

- 2 -

TSORT(1) TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the
input file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated
by blanks. Pairs of different items indicate ordering. Pairs of
identical items indicate presence, but not ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS

BUGS

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of
ordering a library archive file.

- 1 -

TTY (I) TTY(I)

NAME
tty - get the terminal's name

SYNOPSIS
tty [-I 1 [-8 1

DESCRIPTION
Tty prints the path name of the user's terminal. The -I option
prints the synchronous line number to which the user's terminal is
connected, if it is on an active synchronous line. The -8 option
inhibits printing of the terminal's path name, allowing one to test
just the exit code.

EXIT CODES
2
o
1

DIAGNOSTICS

if invalid options were specified,
if standard input is a terminal,
otherwise.

"not on an active synchronous line)) if the standard input is not a
synchronous terminal and -I is specified.
"not a tty)) if the standard input is not a terminal and -8 is not
specified.

- 1 -

UAHELP(I) (AT&T UNIX PC only) UAHELP (I)

NAME
uahelp - user agent help process

SYNOPSIS
uahelp -h helpfile [-t title] [-d debugfile]

DESCRIPTION
Uahelp is a help facility which is driven by a text file (helpfile).
The syntax of this file is described below.

Title, if specified, is the title of the initial help display.

If the -d (debug) option is specified, then as helpfile is being
parsed, the lines are written to debugfile. When a syntax error
occurs during the parsing of helpfile, then uahelp displays an error
message and quits. The line containing the error is the last line
written to debugfile. This option is used to debug new helpfiles.

Helpfile is an ordinary ASCII text file, with a "keyword = value"
syntax. The following keywords are defined:

Keyword

Wlabel
Contents
Name
Llabel
Slabel
Branch

Title
Text

Value

Window label
Lists of help displays in this file
Name of current help display
Long screen label for current display
Short screen label for current display
List of help displays available via SLK's from
the current help display
Title of current help display
Text of current help display

All keywords must be case correct and followed by an equal sign
(=) and a value. The Wlabel and Contents keywords must be
defined at the beginning of the helpfile, and they are followed by
a series of definitions of the individual help displays, one for each
display listed under Contents.

The individual help displays begin with a Name definition, which
must be one of the names listed under Contents. The remaining
keyword definitions apply to the current help display, up until the
Text keyword, which terminates the help display definition.

The value of the Contents and Branch keywords must consist
of a list of one or more help display names. These names must be
separated by commas, and the final one must be terminated with
a new line character. The value of the Name keyword is a single
help display name, 16 characters or less. The value of the Wla­
bel, Llabel, Slabel, and Title keywords are strings enclosed in
double quotes (" ").

The value of the Text keyword is text in ADF format (see
ADF(4)). The following embedded codes are recognized:

\ CEN\ Center the line
\IND\ Indent to the next tab stop
\ UL \ Begin underlining

- 1 -

UAHELP(l)

EXAMPLE

\US\
\BL\
\BS\
\EDT\

(AT&T UNIX PC only)

End underlining
Begin bold text (reverse video)
End bold text
End of text

UAHELP (1)

The following is the beginning of a help file, which might be used
for a word processing help facility. It is recommended that all
help files include a help display called "Using help," as in this
example.

Wlabel = "Word processor help"
Contents = Using help, Getting started, Cursor,
Insert, Edit, Format
Name = Using help
LLlabel = "USING HELP"
Slabel =" HELP"
Branch = Using help, Getting started
Title = "How to use the HELP facility"
Text = You can use the HELP facility in two different ways:

Normal help displays consist of a description which \
displayed in a window. If the description doesn't fit \
in the window, the ROLL UP and ROLL DOWN keys may be \
used to view the rest of the display. The screen \
labeled keys at the bottom of the display contain the \
names of other help displays. Press one of these function \
keys to view a different help display.

Press function key F1 (labeled\UL\TABLE OF
CONTENTS\ US\ on the screen) \
to see a listing of all available help \
displays. Select the help display you want with the \
cursor and press ENTER.

In either case, pressing EXIT ends the help display.\EOT\

Name = Getting started
Llabel = "GETTING STARTED"
Slabel = "STARTING"
Branch = Using help, Cursor, Insert, Edit, Format
Title = "Starting to use the word processor"
Text =

Note that the returns are all escaped with the backslash (\),
except for the hard returns at the end of paragraphs.

SEE ALSO
message(3T), ADF(4).

CAVEATS
Uahelp arbitrarily limits help files to 100 distinct displays, and
each display is limited to 100 lines.

- 2 -

UAUPD(l) (AT&T UNIX PC only) UAUPD (1)

NAME
uaupd - update user agent special files

SYNOPSIS
uaupd -r ObjectName [-a UpdateFile] filename

DESCRIPTION
Uaupd updates the special file named in the command line. This
file is assumed to reside in the directory /usr/lib/ua.

The -r option must be specified, and removes the entry associated
with the given Ob}ectName from the special file.

The -a option adds the contents of the UpdateFile to the special
file. The format of the user agent special files is described in
ua(4).

SEE ALSO
ua(4).

- 1 -

UMASK(l) UMASK(1)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000 1

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal
digits refer to read/write/execute permissions for owner, group,
and others, respectively (see chmod(2) and umask(2)). The value
of each specified digit is subtracted from the corresponding ((digit"
specified by the system for the creation of a file (see creat(2)).
For example, umask 022 removes group and others write per­
mission (files normally created with mode 777 become mode 755;
files created with mode 666 become mode 6(4). Umask 022 is the
default on the UNIX PC.

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO
chmod(1), sh(1), chmod(2), creat(2), umask(2).

- 1 -

UMODEM(l) UMODEM(l)

NAME
umodem - remote file transfer program for CP 1M terminals

SYNOPSIS
umodem - [rb I rt I sb I st] [q] [I] [m] [d] [y]
[7] filename

DESCRIPTION
Umodem cooperates with the MODEM.COM, YAM.COM, or similar
program, running on a CP 1M-based intelligent terminal, to per­
form a file transfer. The integrity of the transfer is enhanced by
use of a block checksum for error detection, and block retransmis­
sion for error correction.

Umodem requires exactly one of the following commands:

rb Receive Binary-transfer a file from the terminal, in raw
binary mode. Every byte of the file will be transferred
intact. This mode is usually used to transfer, for example,
.COM files.

rt Receive Text-transfer a file from the terminal, in text
mode. In this mode the program attempts to convert
from the CP 1M text file format to the UNIX format on­
the-fly, by stripping carriage-return characters, and by
ceasing to store data after a control-Z is detected.

sb Send Binary...:.transfer a file to the terminal, in raw binary
mode. Every byte of the file will be transferred intact.
This mode is usually used to transfer, for example, .COM
files.

st Send Text-transfer a file to the terminal, in text mode.
In this mode the program attempts to convert from the
UNIX text file format to the CP 1M format on-the-fly, by
adding carriage-return characters, and by appending a
control-Z to the end of the file.

In addition, umodem recognizes the following options:

q Quiet option-the initial "boiler plate" of program name,
file size, etc., is suppressed.

Logfile option-enables logging the progress of the file
transfer. This option is primarily useful for debugging.

m "Mung-mode" option-unless this option is specified, an
attempt to receive a filename that already exists will be
denied. With this option, the existing file is overwritten.

d Delete the logfile, if it exists, before starting.

y Display file status (size) information only.

- 1 -

UMODEM (1) UMODEM (1)

7 Seven-bit transfer option-strip off the high-order bit of
each byte before it is sent (-st case) or stored (-rt case).
This option is valid only for text-mode transfers.

EXAMPLES

FILES

To transfer MODEM.COM (an executable binary file) to UNIX:

umodem -rb modem.com

To transfer MYDOC.TXT (a WordStar'IM text file) to UNIX, and get
rid of the high-order formatting bits that WordStar™ loves to
embed in the file:

umodem -rt7 mydoc.txt

To transfer foo.c (a UNIX C-source file) to the CP 1M terminal:

umodem -st foo.c

$HOME/umodem.log created or appended to if the -I option
is specified.

SEE ALSO

BUGS

MODMPROT.OOl-Ward Christensen!s description of the
MODEM protocol

MODEM7xx.DOC-Documentation for the MODEM7 series of
CP 1M smart terminal programs, written in 8080 assembly language

YAMDOC.RNO-Documentation for the YAM smart terminal pro­
gram, written in BDS C.

The program supports only the checksum block error check, and
not the more robust CRC.

The program supports neither the MODEM7 nor the YAM batch
file transfer protocols. Only single file transfers are supported.

- 2 -

UNAME(l) UNAME(l)

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-8nrvma 1

DESCRIPTION
Uname prints the current system name of UNIX on the standard
output file. It is mainly useful to determine what system one is
using. The options cause selected information returned by
uname(2) to be printed:

-8 print the system name (default).

-n print the nodename (the nodename may be a name that
the system is known by to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

Arguments not recognized default the command to the -8 option.

SEE ALSO
uname(2).

- 1 -

UNGET(1) UNGET(l)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-8] [-n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that non-SCCS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

SEE ALSO

-rSID Uniquely identifies which delta is no longer
intended. (This would have been specified by
get as the "new delta"). The use of this
keyletter is necessary only if two or more out­
standing gets for editing on the same SCCS file
were done by the same person (login name). A
diagnostic results if the specified SID is ambi­
guous, or if it is necessary and omitted on the
command line.

-8

-n

Suppresses the printout, on the standard out­
put, of the intended delta's SID.

Causes the retention of the gotten file which
would normally be removed from the current
directory.

delta(1), get(1), sact(1).

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

UNIQ (1) UNIQ (1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n 1 [-n 1 1 [input [output 1 1

DESCRIPTION
Un£q reads the input file comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are
removed; the remainder is written on the output file. Input and
output should always be different. Note that repeated lines must
be adjacent in order to be found; see 8ort(1). If the -u flag is
used, just the lines that are not repeated in the original file are
output. The -d option specifies that one copy of just the
repeated lines is to be written. The normal mode output is the
union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output
report in default style but with each line preceded by a count of
the number of times it occurred.

The n arguments specify skipping an initial portion of each line in
the comparison:

-n The first n fields together with any blanks before each
are ignored. A field is defined as a string of non-space,
non-tab characters separated by tabs and spaces from its
neighbors.

+ n The first n characters are ignored. Fields are skipped
before characters.

SEE ALSO
comm(I), sort(I).

- 1 -

UNITS (1) UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

Units converts quantities expressed in various standard scales to
their equivalents in other scales. It works interactively in this
fashion:

You have: inch
You want: em

* 2.540000e+OO
/ 3.937008e-Ol

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated
by suffixed positive integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1.02068ge+OO
/ 9.79729ge-Ol

Units only does multiplicative scale changes; thus it can convert
Kelvin to Rankine, but not Celsius to Fahrenheit. Most familiar
units, abbreviations, and metric prefixes are recognized, together
with a generous leavening of exotica and a few constants of nature
including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound
names are run together, (e.g. light year). British units that differ
from their U.s. counterparts are prefixed thus: brgallon. For a
complete list of units, type:

cat /usr/lib/unittab

/usr /lib/unittab

- 1 -

UUCP (IC) UUCP (IC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX copy

SYNOPSIS
uucp [options 1 source-files destination-file

uulog [options 1
uuname [-I 1

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on
your machine, or may have the form:

system-name !path-name

where system-name is taken from a list of system names which
uucp knows about. The system-name may also be a list of names
such as

system-narrie!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified
route, and only to a destination in PUBDIR (see below). Care
should be taken to insure that intermediate nodes in the route are
willing to forward information.

The shell metacharacters ?, * and [.••] appearing in path-name
will be expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a
login name on the specified system and is replaced
by that user's login directory;

(3) a path name preceded by -j user where user is a
login name on the specified system and is replaced
by that user's directory under PUBDffi;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the
copy will fail. If the destination-file is a directory, the last part of
the source-file name is used.

Uucp preserves execute permissions across the transmission and
gives 0666 read and write permissions (see chmod(2)).

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying
the file to the spool directory (default).

-0 Copy the source file to the spool directory.

-mlile Report status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

- 1 -

UUCP (IC) UUCP(IC)

-n user Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed
there. (Note: this will only be successful if the remote
machine allows the uucp command to be executed by
/ usr/lib/uucp/uuxqt.)

Uucp returns on the standard output a string which is the job
number of the request. This job number can be used by uustat to
obtain status or terminate the job.

Uulog.
Uulog queries a summary log of uucp and uux(1C) transactions in
the file /usr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

-uuser Print information about work done for the specified user.

Uuname.

FILES

Uuname lists the uucp names of known systems. The -I option
returns the local system name.

/usr /spooljuucp spool directory
/usr /spooljuucppublic public directory for receiving and sending

(PUBDIR)
/usr/lib/uucp/* other data and program files

SEE ALSO
mail(l), uux(1C).

WARNING

BUGS

The domain of remotely accessible files can (and for obvious secu­
rity reasons, usually should) be severely restricted. You will very
likely not be able to fetch files by path name; ask a responsible
person on the remote system to send them to you. For the same
reasons you will probably not be able to send files to arbitrary
path names. As distributed, the remotely accessible files are those
whose names begin /usr/spool/uucppublic (equivalent to
-nuucp or just -).

All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single
file. Receiving multiple files specified by special shell characters?
* [•••] will not activate the -m option.

- 2 -

UUSTAT(IC) UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
u usta t [options 1

DESCRWTION
Uustat will display the status of, or cancel, previously specified
uucp commands, or provide general status on uucp connections to
other systems. The following options are recognized:

-jjobn Report the status of the uucp request jobn. If all is
used for jobn, the status of all uucp requests is
reported. If jobn is omitted, the status of the current
user's uucp requests is reported.

-kjobn Kill the uucp request whose job number is jobn. The
killed uucp request must belong to the person issuing
the uustat command unless one is the super-user.

-rjobn Rejuvenate jobn. That is, jobn is touched so that its
modification time is set to the current time. This
prevents uuclean from deleting the job until the job's
modification time reaches the limit imposed by
uuclean.

-chour Remove the status entries which are older than hour
hours. This administrative option can only be initiated
by the user uucp or the super-user.

-u user Report the status of all uucp requests issued by user.

-ssys Report the status of all uucp requests which communi-
cate with remote system sys.

-ohour Report the status of all uucp requests which are older
than hour hours.

-yhour Report the status of all uucp requests which are
younger than hour hours.

-mmch Report the status of accessibility of machine mch. If
mch is specified as all, then the status of all machines
known to the local uucp are provided.

-Mmch This is the same as the -m option except that two
times are printed: the time that the last status was
obtained and the time that the last successful transfer
to that system occurred.

-0 Report the uucp status using the octal status codes
listed below. If this option is not specified, the verbose
description is printed with each uucp request.

-q List the number of jobs and other control files queued
for each machine and the time of the oldest and
youngest file queued for each machine. If a lock file
exists for that system, its date of creation is listed.

When no options are given, uustat outputs the status of all uucp
requests issued by the current user. Note that only one of the

- 1 -

UUSTAT(lC) UUSTAT(lC)

FILES

options -j, -ill, -k, -c, -r, can be used with the rest of the
other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user
hdc to communicate with system mhtsa within the last 72 hours.
The meanings of the job request status are:

job-number user remote-system command-time
status-time status

where the status may be either an octal number ora verbose
description. The octal code corresponds to the following descrip­
tion:

OCTAL
000001

000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

STATUS
the copy failed, but the reason cannot be
determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated
remote system cannot create temporary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary file
cannot execute uucp
copy (partially) succeeded
copy finished, job deleted
job is queued
job killed (incomplete)
job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status IS a self­
explanatory description of the machine status.

jusr /spooljuucp
jusr/lib/uucpjL_stat
jusr /lib/uucpjR_stat

spool directory
system status file
request status file

SEE ALSO
uucp(lC).

- 2-

UUTO (IC) UUTO(lC)

NAME
uuto, uupick - public UNIX-to-UNIX file copy

SYNOPSIS
u uto [options 1 source-files destination
uupick [-8 system 1

DESCRIPTION
Uuto sends source-files to destination. Uuto uses the uucp(lC)
facility to send files, while it allows the local system to control the
file access. A source-file name is a path name on your machine.
Destination has the form:

system! user

where system is taken from a list of system names that uucp
knows about (see uuname). Logname is the login name of some­
one on the specified system.

Two options are available:

-p Copy the source file into the spool directory before
transmission.

-ID Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUB­
DIR on system, where PUBDIR is a public directory defined in the
uucp source. Specifically the files are sent to

PUBDIR/receive/ user/ mysystem/files.

The destined recipient is notified by maz"l(l) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user.
Specifically, uupick searches PUBDIR for files destined for the user.
For each entry (file or directory) found, the following message is
printed on the standard output:

from system: [file file-name 1 [dir dirname 1 ?

Uupick then reads a line from the standard input to determine the
disposition of the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir 1 Move the entry to named directory dir (current
directory is default).

a [dir 1 Same as m except moving all the files sent from
system.

p Print the content of the file.

q Stop.

EaT (control-d) Same as q.

!command Escape to the shell to do command.

... Print a command summary.

Uupick invoked with the -8system option will only search the
PUBDIR for files sent from system.

- 1 -

UUTO (IC) UUTO(IC)

FILES
PUBDIR jusr jspooljuucppublic public directory

SEE ALSO
mail(l), uuclean(lM), uucp(lC), uustat(lC), uux(lC).

- 2 -

UUX(IC) UUX(IC)

NAME
uux - UNIX-to-UNIX command execution

SYNOPSIS
u ux [options 1 command-string

DESCRIPTION
Uux will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to
a file on a specified system. Note that, for security reasons, many
installations will limit the list of commands executable on behalf
of an incoming request from uux . . Many sites will permit little
more than the receipt of mail (see mail(1)) via uux.

The command-string is made up of one or more arguments that
look like a Shell command line, except that the command and file
names may be prefixed by system-name!. A null system-name is
interpreted as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx w here xxx is a login
name on the specified system and is replaced by that
user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

will get the f1 files from the "usg" and "pwba" machines, execute
a diff command and put the results in f1.diff in the local direc­
tory.

Any special shell characters such as < >;1 should be quoted either
by quoting the entire command-string, or quoting the special char­
acters as individual arguments.

Uux will attempt to get all files to the execution system. For files
which are output files, the file name must be escaped using
parentheses. For example, the command

uux a!uucp b!/usr/file \(c!/usr/file\)

will send a uucp command to system "a" to get /usr/file from
system "b" and send it to system "c".

Uux will notify you if the requested command on the remote sys­
tem was disallowed. The response comes by remote mail from the
remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to
the command-string.

- n Send no notification to user.

-mf£ie Report status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

- 1 -

UUX(IC) UUX(IC)

FILES

Uux returns an ASCII string on the standard output which is the
job number. This job number can be used by uustat to obtain the
status or terminate a job.

/usr/lib/uucp/spool
/usr/lib/uucp/*

spool directory
other data and programs

SEE ALSO

BUGS

uuclean(1M), uucp(lC).

Only the first command of a shell pipeline may have a system­
name!. All other commands are executed on the system of the
first command.
The use of the shell metacharacter * will probably not do what
you want it to do. The shell tokens < < and> > are not imple­
mented.

- 2 -

VAL(l) VAL(l)

NAME
val - validate sees file

SYNOPSIS.
val -
val [-8] [-rSID] [-mname] [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments
to val may appear in any order. The arguments consist of
key letter arguments, which begin with a -, and named files.

Val has a special argument, -, which causes reading of the stan­
dard input until an end-of-file condition is detected. Each line
read is independently processed as if it were a command line argu­
ment list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit
code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any
key letter argument apply independently to each named file on the
command line.

-8

-rSID

-mname

-ytype

The presence of this argument silences the
diagnostic message normally generated on
the standard output for any error that is
detected while processing each named file
on a given command line.

The argument value SID (Sees
IDentification String) is an sees delta
number. A check is made to determine if
the SID is ambiguous (e. g., rl is ambiguous
because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or
invalid (e. g., r1.0 or r1.1.0 are invalid
because neither case can exist as a valid
delta number). If the SID is valid and not
ambiguous, a check is made to determine if
it actually exists.

The argument value name is compared
with the sees %M% keyword in file.

The argument value type is compared with
the sees %Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible
errors, i. e., can be interpreted as a bit string where (moving from
left to right) set bits are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file or file not sees;
bit 4 = SID is invalid or ambiguous;

- 1 -

VAL(l)

bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

VAL(l)

Note that val can process two or more files on a given command
line and in turn can process multiple command lines (when read­
ing the standard input). In these cases an aggregate code is
returned-a logical OR of the codes generated for each command
line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

DIAGNOSTICS

BUGS

Use help(1) for explanations.

Val can process up to 50 files on a single command line. Any
number above 50 will produce a core dump.

- 2 -

VC (1) VC (1)

NAME
vc - version control

SYNOPSIS
VC [-8.] [-t] [-cchar] [-8] [keyword=value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the stan­
dard output under control of its arguments and control state­
ments encountered in the standard input. In the process of per­
forming the copy operation, user declared keywords may be
replaced by their string value when they appear in plain text
and/ or control statements.

The copying of lines from the standard input to the standard out­
put is conditional, based on tests (in control statements) of key­
word values specified in control statements or as vc command
arguments.

A control statement is a single line beginning with a control char­
acter, except as modified by the -t keyletter (see below). The
default control character is colon (:), except as modified by the -c
keyletter (see below). Input lines beginning with a backslash (\)
followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines
beginning with a backslash followed by a non-control character
are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must
be alphabetic. A value is any ASCII string that can be created
with ed(l); a numeric value is an unsigned string of digits. Key­
word values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword
surrounded by control characters is encountered on a version con­
trol statement. The -8. key letter (see below) forces replacement
of keywords in all lines of text. An uninterpreted control charac­
ter may be included in a value by preceding it with \. If a literal
\ is desired, then it too must be preceded by \.

Keyletter Arguments
-8. Forces replacement of keywords surrounded by control

characters with their assigned value in all text lines and
not just in vc statements.

-t All characters from the beginning of a line up to and
including the first tab character are ignored for the pur­
pose of detecting a control statement. If one is found, all
characters up to and including the tab are discarded.

-cchar Specifies a control character to be used in place of :.

-8 Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements
:dcl keywordL ••. , keyword]

Used to declare keywords. All keywords must be declared.

- 1 -

VC(l) VC (1)

:asg keyword=value
Used to assign values to keywords. An asg statement over­
rides the assignment for the corresponding keyword on the
vc command line and all previousasg's for that keyword.
Keywords declared, but not assigned values have null values.

:if condition

:end
Used to skip lines of the standard input. If the condition is
true all lines between the if statement and the matching end
statement are copied to the standard output. If the condi­
tion is false, all intervening lines are discarded, including
control statements. Note that intervening if statements and
matching end statements are recognized solely for the pur­
pose of maintaining the proper if-end matching.

The syntax of a condition is:

::= ["not" 1 <or>
::= <and> I <and> "1" <or>
::= <exp> I <exp> "&" <and>

<cond>
<or>
<and>
<exp>
<value>
<op>
<value>
string>

::= "(" <or> ")" I <value> <op>

::= "=" I "!=" I "<" I ">"
::= <arbitrary ASCII string>

The available operators and their meanings are:

equal
!= not equal
& and
I or
> greater than
< less than
() used for logical groupings

<numeric

not may only occur immediately after the Z},
and when present, inverts the value of
the entire condition

The > and < operate only on unsigned integer values (e. g.:
012 > 12 is false). All other operators take strings as argu­
ments (e. g.: 012 != 12 is true). The precedence of the
operators (from highest to lowest) is:

=!=> <
&
I

all of equal precedence

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by
at least one blank or tab.

- 2 -

VC(I)

::text

:on

:off

VC (1)

Used for keyword replacement on lines that are copied to the
standard output. The two leading control characters are
removed, and keywords surrounded by control characters in
text are replaced by their value before the line is copied to
the output file. This action is independent of the -a
keyletter.

Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ••• (915)
on the diagnostic output. Vc halts execution, and returns
an exit code of 1.

DIAGNOSTICS
Use help (1) for explanations.

EXIT CODES
0- normal
1 - any error

- 3-

VI(1) VI(l)

NAME
vi, view - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r] [+command] [-I] [-wn] -x name

DESCRIPTION
Vi (visual) is a display oriented text editor based on ex(1) View is
synonymous with vi. Ex and vi run the same code; it is possible
to get to the command mode of ex from within vi and vice-versa.

Note that the ability to edit encrypted files is present only in the
domestic (U.S.) version of the UNIX PC software.

COMMANDS
The following summarizes the vi commands and procedures. The
Introduction to Display Editing with Vi provides full details on
using vi.

NOTATION AND SPECIAL KEYS
Denotes the CONTROL key (Ctrl on the
UNIX PC) to be held down while the follow­
ing character is typed.

t Used to show the caret ('") should be typed.

in] Optional number of repetitions preceding a
command. Do not type []. In most cases
omitting n defaults to one.

object

<ESC>

<CR>

BS

DELETE

The text object-(character, word, sentence,
paragraph, or line) that a command operates
on.

A prefix to a set of commands for file and
option manipulation and escapes to the shell.
The : and later keystrokes appear at the bot­
tom of the screen. The command is ter­
minated with a < CR> or < ESC> .

ESCAPE key (Esc on the UNIX PC) used to
return to command mode. Type <ESC>
when you are not sure of the current mode.
Causes a beep if already in command mode
(harmless).

Carriage RETURN key.

BACKSPACE key. AH on terminals without
a backspace key.

Sometimes labeled DEL, BREAK, or
RUBOUT (shift of the Esc key on the UNIX
PC). This key generates an interrupt that
tells the editor to stop what it is doing.

ENTERING THE VI EDITOR
Note: Follow entry with <OR>.

- 1 -

VI(!)

vi file

vi

vi + n file

vi + file

vi -r

vi -r file

vi filet, file2, ...

vi -t tag

vi +/pat fae

Edit at first line of file

Edit a new empty file

Edit at n line in file

Edit at last line in file

List saved files

Recover file and edit saved file

VI(!)

Edit filet; file 2 ; ... (after editing file1 enter
:n for each remaining file)

Edit at tag file in tags file

Search for and edit at pattern in file

view file Read only view of file

LEAVING VI EDITOR
:q<CR> Quit vi when no changes have occurred since

last write

:q!<CR>

:wq<CR>

ZZ
POSITIONING THE
File Positioning

[nj"F
[nj"B

[ntD
[nj"U
[nj"E
[nj"Y
[n}G

[n}1 pat

[n}?pat

[n}n

[nfN

[n}lpatl+m
[n}?pat?-m

Screen Positioning
[nfH

[nfL

M

Line Positioning
o

Quit vi, do not save changes since last write

Write and quit (exit vi, saving changes)

Write and quit (exit vi, saving changes)

CURSOR

Forward [n} full screens

Backward screens

Scroll down (default is half screen)

Scroll up (default is half screen)

Scroll down 1 line

Scroll up 1 line

Go to line n (default is last line of file)

Go to next line matching pat

Previous line matching pat

Repeat last I or ?

Reverse last / or ?

mth line after pat

m th line before pat

To nth line from top of display. Without n,
to top

To nth line from bottom of display. Without
n, to bottom

To middle line of display

Beginning of line

- 2 -

VI(1) VI (1)

(nj$ End of line

(nj+ Next line, at first non-white

[nj- Previous line, at first non-white

(nj<CR> Return, same as +
(nj!1 or j Next line, same column

(nfll or k Previous line, same column

Character Positioning Within a Line
(nfl First non-white

(njh or -+

(njl or t­

(njspacebar
(nJbackspace

(ntH
(njfx

(nfFx
[njtx
(njTx

(n/;
(nj,

(njl
Word Positioning

(njw

(njb

(nje

(njW

[nfB

[nfE

Forward one character

Backward one character

Same as-+

Backwards one character

Same as t- or backspace

Find x forward

Find x backward

Move up to x forward

Move up to x backward

Repeat last f, F, t, or T

Inverse of ;

Move to specified column number n

Move forward to beginning of word. Punc­
tuation and strings of punctuation count as
words.

Move back to beginning of word. Punctua­
tion and strings of punctuation count as
words.

Move forward to end of word. Punctuation
and strings of punctuation count as words.

Move forward to beginning of word. Punc­
tuation ignored.

Move back to beginning of word. Punctua­
tion ignored.

Move forward to end of word. Punctuation
ignored.

Sentence,
(nj)

Paragraph, Heading Positioning
Forward to next sentence

(nj (

(nj}
(nj {

Back a sentence

Forward to next paragraph

Back a paragraph

- 3-

VI(l) VI(l)

[n]]] Forward to next heading

[n] [[Back a heading

CREATING TEXT
atext<ESC> Append after cursor, until <ESC>

itext<ESC> Insert before cursor

Atext<ESC> Append at end of line

Itext<ESC> Insert before first non-blank

otext<ESC> Open line below

Otext<ESC> Open above

MAKING CORRECTIONS DURING TEXT CREATION
AW Erase last word during an insert

kill Kill the insert on this line (usually @, AX, or
"U)

[njBS
AH

\
<ESC>
A?

AD

t"D
O"D
AV

MODIFYING TEXT
Changing Text

[n]Ctext<ESC>

[nfRtext<ESC>

[njStext<ESC>

Erase last character

Erase last character

Escapes AH, your erase and kill

Ends insertion, back to command mode

Interrupt, terminates insert

Backtab over autoindent

Kill auto,'ndent, save for next

... but at margin next also

Quote non-printing character

Switch character from lowercase to uppercase
and vice versa

Change from cursor to end of line (same as
c$)

Replace characters

Substitute on lines

[njcobj text<ESC> Change the specified object (word) to the fol­
lowing text

[njrx

[njstext<ESC>

[n]cctext<ESC>

Deleting Text
D

[njx
[nfX
[n]d(object)

Replace character with x

Replace a character with a text string

Change a whole line

Delete from cursor to end of line

Delete a character

Delete character to left of cursor

Delete the specified object (word, sentence,
paragraph, etc.)

- 4-

VI(l) VI(I)

fnJdd Delete a line

Moving Text
"r

"rp

"rP

p

P

Copying Text
"r

yfnJobject

fnJY

fnJyy
"rp

"rP

Named register r that save delete commands.
Legal values of r are letters a through z.

Puts deleted text from registers "r after or
below cursor

Puts deleted text from registers "r before or
above cursor

Puts last deleted text after or below cursor

Puts last deleted text before or above cursor

Named register r that can precede a yank
command. Legal values of r are letters a
through z.

Yanks a copy of the following object into a
register

Yanks a copy of the current line into a regis­
ter

Same as Y

Puts yanked text from register "r after or
below cursor

Puts yanked text from register "r before or
above cursor

p Puts last yanked text after or below cursor

P Puts last yanked text before or above cursor

UNDOING, REDOING, RETRIEVING
u Undo last change

u

"hp·

Restore current line

Repeat last change

Retrieve one of last 9 deletes; h is a hidden
register numbered 1 through 9. Retrieved in
reverse order.

DOING GLOBAL SEARCHES AND CHANGES
Note: Follow entry with <CR>.

:g/ text Move cursor to last line in file with text
:g/ text / p Print all lines with text

:g/text /nu
:fmJ ,fnJg/text
:fmJ,fnJg/ text/ p

:fmJ,fnJg/ text/ n u

:g/ text/sf / newtext

Print all lines and line numbers with text

Move cursor to n line in file with text
Print all lines with text from line m to n
Print all lines and line numbers with text
from line m to n

Change first appearance of text in each line in

- 5 -

VI(l)

file to newtext

:g/text/s/ /newtext/p

VI(l)

Change first appearance of text in each line in
file to newtext and print each changed line

:g/text/s/ /newtext/c
List one at a time each line with text and
change as required to newtext using a
y<CR>

:[mJ,[nJg/ text/ s/ / newtext
Change first appearance of text in each line in
file to newtext

: [mJ,[nJg/ text/ s/ / newtext/ p
Change first appearance of text in lines from
m to n to newtext and print each changed line

: [mJ,[nJg/ text/ s/ / newtext/ c
List one at a time each line with text from m
to n and change as required to newtext using
ay<CR>

MANIPULATING FILES
Copy From Another File

:r file<CR> Copy file into buffer after current line

:[nJr file<CR> Copy file to buffer after nth line

Copy To Another File
Note: Follow entry with <CR>.

:w f£le Write the current file to file

:w! file

:w> >file

:[mJ,[nJw file

:[mJ,[nJw! file

: [mJ,[nJw > > file
Edit Current File

:w<CR>

:w file<CR>

"e!<CR>

:f<CR>
AG

:ta tag<CR>
A]

Overwrite existing file with file

Add current file to end of file

Write lines m through n to file

Overwrite existing file with file containing
lines m through n

Add lines m through n to end of file

Write changes to current file

Write file to current unnamed file

Reedit current file, discarding changes since
last write

Show current file and line

Synonym for :f

To tag file entry tag

:ta, following word is tag

Edit Other Files From Current File
:e file<CR> Edit file when write has occurred in current

file, return to shell after edit, changes not lost
in current file

- 6 -

VI(l)

:e! file<CR>

:e + name< CR>

:e + n<CR>

:n<CR>

:n args<CR>

:e #<CR>

VI(1)

Edit file when no write has occurred in
current file, return to shell after edit, changes
list in current file

Edit starting at end

Edit starting at line n

Edit next file in list when vz" was called with
more than one file

Specify new list of files to be edited

Edit alternate file when two files are being
edited

At Synonym for :e #.
ESCAPING TO THE SHELL

:sh<CR> Start a separate shell (to run several com­
mands), return with "n

:!command<CR> Run one shell command, then return to
current buffer

MARKING AND RETURNING
Previous context

rnx

"x

'x

... at first non-white in line

Mark position with letter x

to mark x

... at first non-white in line

MISCELLANEOUS OPERATIONS
Repeat the last append, insert, open, delete,
change, or put command

Switch character from lowercase to uppercase
and vice versa

A1 Delete or rubout interrupts

i<CR> <ESC> Split a line before the cursor

a<CR> <ESC> Split a line after the cursor

AL Reprint screen if "1 scrambles it

J Join lines

:nu<CR> Line number cursor is on

xp Switch characters

SETTING OPTIONS
Initializing Options

:set x<CR> Enable option x

:set nox<CR> Disable option x

:set x=val< CR> Assign a value to x option

:set<CR> Show changed options

:set all<CR> Show all options

- 7-

VI(l) VI(l)

:set x?<CR> Show value of option x

Options
autoindent, ai (default: noai)

When on, in the append, change, insert, open, or substi­
tute mode a new line will be started at same indent as
previous line.

audoprint, ap (default: ap)
Causes the current line to be printed after each delete,
copy, join, move, substitute, t, undo or shift command.
This has the same effect as supplying a trailing p to each
such command. The autopr£nt is suppressed in globals
and only applies to the last of many commands on a line.

autowrite, aw (default: noaw)
Causes the contents of the buffer to be written to the
current file (if you have modified it) and gives a next,
rewind, tab, or! command, or a At (switch files) or A] (tag
goto) command. Note: the command does not autowrite.
In each case, there is an equivalent way of switching when
the autowrz'te option is set to avoid the autowrite (ex for
next, rewind! for rewind, tag! for tag, shell for !, and :e
#nd for a :ta! command).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and
form-feed to be discarded from the input. A complaint is
registered the first time a backspace character is dis­
carded. The beauttfy option does not apply to command
input.

directory, dir (default: dir=/tmp)
Specifies the directory in which v£ places its buffer file. If
this directory is not writable, then the editor will exit
abruptly when it fails to be able to create its buffer there.

edcompatible (default: noedcompatible)
Causes the presence or absence of g and c suffixes on sub­
stitute commands to be remembered and to be toggled by
repeating the suffixes. The suffix r makes the substitution
be as in the - command, instead of line &.

errorbeIIs, eb (default: noeb)
Error messages are preceded by a bell. Bell ringing in
open and va'sual mode on errors is not suppressed by set­
ting noeb. If possible the editor always places the error
message in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

hard tabs, ht (default: ht=8)
Gives the boundaries on which terminal hardware tabs are
set (or on which the system expands tabs).

ignorecase, ic (default: noic)
All uppercase characters in the text are mapped to lower
case in regular expression matching and vice versa, except
in character class specifications.

- 8-

VI(l) VIC l)

lisp (default: nolisp)
The autoindent option indents appropriately for lisp code,
and the (), {}, [L and]] commands in open and visual
modes are modified to have meaning for lisp.

list (default: nolist)
All printed lines will be displayed more unambiguously,
showing tabs and end-of-lines as in the list command.

magic (default: magic for vi)
If nomagic is set, the number of regular expression meta­
characters is greatly reduced, with only i and $ having
special effects. In addition, the metacharacters - and & of
the replacement pattern are treated as normal characters.
All the normal metacharacters may be made magic when
nomagic is set by preceding them with a \.

mesg (default: mesg)
Causes write permission to be turned off to the terminal
while you are in visual mode if nomesg is set.

number, nu (default: nonumber)
Causes all output lines to be printed with line numbers.
In addition, each input line will be prompted for by sup­
plying the line number it will have.

open (default: open)
If noopen, the commands open and visual are not permit­
ted.

optimize opt (default: optimize)
Throughput of text is expedited by setting the terminal
not to do automatic carriage returns when printing more
than one (logical) line of output, greatly speeding output
on terminals without addressable cursors when text with
leading white space is printed.

paragraphs, para (default: para=IPLPPPQPPLIbp)
Specifies the paragraphs for the { and } operations in
open and visual mode. The pairs of characters in the
option's value are the names of the macros which start
paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (:).

readonly (default: noreadonly)
Set by chmod shell command to allow read but no write.

redraw (default: noredraw)
The editor simulates (using great amounts of output) an
intelligent terminal on a dumb terminal (e.g., during inser­
tions in visual mode the characters to the right of the cur­
sor position are refreshed as each input character IS

typed). This option is useful only at very high speed.

rema p (def aul t: remap)
If on, macros are repeatedly tried until they are
unchanged. For example, if 0 is mapped to 0, and 0 is

- 9 -

VI(l) VI (1)

mapped to I, then if remap is set, 0 will map to I; but of
noremap is set, if will map to O.

report (default: report=5)
Specifies a threshold for feedback from commands. Any
command which modifies more than the specified number
of lines will provide feedback as to the scope of its
changes. For commands such as global, open, undo, and
visual, which have potentially more far-reaching scope,
the net change in the number of lines in the buffer is
presented at the end of the command subject to this same
threshold. Thus, notification is suppressed during a global
command on the individual commands performed.

scroll (default: scroll=lh window)
Determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in command
mode and the number of lines printed by a command
mode z command (double the value of scroll).

sections (default: sections=SHNHH HU)
Specifies the section macros for the [[and]] operations in
open and visual modes. The pairs of characters in the
option's value are the names of the macros which start
paragraphs.

shell, sh (default: sh= /bin/sh)
Gives the pathname of the shell forked for the shell escape
command !, and by the shell command. The default IS

taken from SHELL in the environment, if present.

shiftwidth, sw (default: sw=8)
Gives the width a software tabstop used in reverse tab­
bing with AD when using autoindent to append text, and
by the shift commands.

show match, sm (default: nosm)
In open and visual modes, when a) or } is typed, the cur­
sor moves to the matching (or { for one second if this
matching character is on the screen. Extremely useful
with lisp.

slowopen, slow (default: terminal dependent)
Affects the display algorithm used in visual mode, holding
off display updating during input of new text to improve
throughput when the terminal in use is both slow and
unintelligent.

tabstop, ts (default: ts=8)
The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

taglength, tl (default: tl=O)
Tags are not significant beyond this many characters. A
value of zero (the default) means that all characters are
significant.

tags (default: tags=tags /usr/lib/tags)
A path of files to be used as tag files for the tag command.

- 10 -

VI(l)

FILES

VI(1)

A requested tag is searched for in the specified files,
sequentially. By default, files called tags are searched for
in the current directory and in /usr/lib (a master file for
the en tire system).

term (default from environment $TERM)
The terminal type of the output device.

terse (default: noterse)
Shorter error diagnostics are produced for the experienced
user.

ttytype=
Terminal type defined to system for visual mode. Can be
defined before entering visual editor by TERM=type.

warn (default: warn)
Warns if there has been "[No write since last change]"
before a ! command escape.

window (default: window=speed dependent)
The number of lines in a text window in the visual com­
mand. The default is 8 at slow speeds (600 baud or less),
16 at medium speed (1200 baud), and the full screen
(minus one line) at higher speeds.

w300, w1200, wQ600
These are not true options but set window only if the
speed is slow (300), medium (1200), or high (9600), respec­
tively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws (default: ws)
Searches that use regular expressions in addressing will
wrap around past the end of the file.

wrapmargin, wm (default: wm=O)
Defines a margin for automatic wrapover of text during
input in open and visual modes.

writeany, wa (default: nowa)
Inhibit checks normally made before write commands,
allowing a write to any file which the system protection
mechanism will allow.

See eX(I).
SEE ALSO

BUGS

ex(I), edit (1), "An Introduction to Display Editing with Vi".

Software tabs using AT work only immediately after the autoin­
dent.

Left and right shifts on intelligent terminals don't make use of
insert and delete character operations in the terminal.

The wrap margin option can be fooled since it looks at output
columns when blanks are typed. If a long word passes through
the margin and onto the next line without a break, then the line

- 11 -

VI(l) VI(1)

won't be broken.

Insert/ delete within a line can be slow if tabs are present on intel­
ligent terminals, since the terminals need help in doing this
correctly.

Saving text on deletes in the named buffers is somewhat
inefficient.

The source command does not work when executed as :source;
there is no way to use the :append, :change, and :insert com­
mands, since it is not possible to give more than one line of input
to a : escape. To use these on a :global you must Q to ex com­
mand mode, execute them, and then reenter the screen editor with
vi or open.

Moving the cursor backward a screen at a time does not work
correctly.

The In] precursor does not work for these commands: B, U, / pat,
?pat, /pat, /pat/+m, ?pat?-m.

- 12 -

WAIT (l) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and
report on abnormal terminations.

Because the wait(2) system call must be executed in the parent
process, the shell itself executes wait, without creating a new pro­
cess.

SEE ALSO
shell·

BUGS
Not all the processes of a 3- or more-stage pipeline are children of
the shell, and thus can't be waited for.

- I -

WC(l) WC(I)

NAME
wc - word count

SYNOPSIS
we [-Iwe I [names I

DESCRIPTION
We counts lines, words and characters in the named files, or in
the standard input if no names appear. It also keeps a total
count for all named files. A word is a maximal string of charac­
ters delimited by spaces, tabs, or new-lines.

The options I, w, and e may be used in any combination to
specify that a subset of lines, words, and characters are to be
reported. The default is -Iwe.

When names are specified on the command line, they will be
printed along with the counts.

- 1 -

WHAT(l) WHAT(l)

NAME
what - identify SCCS files

SYNOPSIS
wha.t files

DESCRIPTION
What searches the given files for all occurrences of the pattern
that get{l) substitutes for %Z% (this is @(#) at this printing)
and prints out what follows until the first If, >, new-line, \, or
null character. For example, if the C program in file f.c contains

char ident[] = " @(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command
get(1), which automatically inserts identifying information, but it
can also be used where the information is inserted manually.

SEE ALSO
get(l), help{l).

DIAGNOSTICS

BUGS

Use help (I) for explanations.

It's possible that an unintended occurrence of the pattern @(#)
could be found just by chance, but this causes no harm in nearly
all cases.

- 1 -

WIIO (1) WHO(I)

NAME
who - who is on the system

SYNOPSIS
who [-uTlpdbrta8 1 [file 1
who am i

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed
time since activity occurred on the line, and the process-ID of the
command interpreter (shell) for each current UNIX user. It exam­
ines the /etc/utmp file to obtain its information. If file is given,
that file is examined. Usually, file will be /etc/wtmp, which
contains a history of all the logins since the file was laSt created.

Who with the am i option identifies the invoking user.

Except for the default -8 option, the general format for output
entries is:

name [state] line time activity pid [comment] [exit 1
With options, who can list logins, logoffs, reboots, and changes to
the system clock, as well as other processes spawned by the init
process. These options are:

-u This option lists only those users who are currently logged
in. The name is the user's login name. The line is the
name of the line as found in the directory / dev. The time
is the time that the user logged in. The activ£ty is the
number of hours and minutes since activity last occurred on
that particular line. A dot (.) indicates that the terminal
has seen activity in the last minute and is therefore
"current". If more than twenty-four hours have elapsed or
the line has not been used since boot time, the entry is
marked old. This field is useful when trying to determine
whether a person is working at the terminal or not. The
pid is the process-ID of the user's shell. The comment is the
comment field associated with this line as found in
/etc/inittab (see inittab(4)). This can contain informa­
tion about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, etc.

- T This option is the same as the -u option, except that the
state of the terminal line is printed. The state describes
whether someone else can write to that terminal. A +
appears if the terminal is writable by anyone; a - appears
if it is not. Root can write to all lines having a + or a -
in the state field. If a bad line is encountered, a ? IS

printed.

-I This option lists only those lines on which the system is
waiting for someone to login. The name field is LOGIN.in
such cases. Other fields are the same as for user entries
except that the state field doesn't exist.

-p This option lists any other process which is currently active
and has been previously spawned by init. The name field

- 1 -

WHO(I) WHO (I)

FILES

is the name of the program executed by init as found in
/ etc/inittab. The state, line, and activity fields have no
meaning. The comment field shows the id field of the line
from / etc/inittab that spawned this process. See init­
tab(4).

-d This option displays all processes that have expired and not
been respawned by init. The exit field appears for dead
processes and contains the termination and exit values (as
returned by wait(2)), of the dead process. This can be use­
ful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the int't pro-
cess.

-t This option indicates the last change to the system clock
(via the date(l) command) by root. See sU(l).

-a This option processes / etc/ utmp or the named file with
all options turned on.

-8 This option is the default and lists only the name, line and
time fields.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
init(lM) in the UNIX System Administrator's Manual.
date(1), login(lM), mesg(1), su(1), wait(2), inittab(4), utmp(4).

- 2 -

WRITE (1) WRITE (1)

NAME
write - write to another user

SYNOPSIS
write user [line 1

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user.
When first called, it sends the message:

Messa.ge from yourname (tty??) [date] •••

to the person you want to talk to. When it has successfully com­
pleted the connection it also sends two bells to your own terminal
to indicate that what you are typing is being sent.

The recipient of the message should write back at this point.
Communication continues until an end of file is read from the ter­
minal or an interrupt is sent. At that point write writes EaT on
the other terminal and exits.

If you want to write to a user who is logged in more than once,
the line argument may be used to indicate which line or terminal
to send to (e.g., ttyOO); otherwise, the first instance of the user
found in /etc/utmp is assumed and the following message
posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the
mesg(l) command. Writing to others is normally allowed by
default. Certain commands, in particular nroff(l) and pr(1) disal­
low messages in order to prevent interference with their output.
However, if the user has super-user permissions, messages can be
forced onto a write inhibited terminal.

If the character ! is found at the beginning of a line, write calls
the shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you first
write to another user, wait for them to write back before starting
to send. Each person should end a message with a distinctive sig­
nal (i.e., (0) for "over") so that the other person knows when to
reply. The signal (00) (for "over and out") is suggested when
conversation is to be terminated.

/etc/utmp
/bin/sh

to find user
to execute!

SEE ALSO
mail(l), mesg(l), nroff(l), pr(1), sh(l), who(l).

DIAGNOSTICS
"user not logged in" if the person you are trying to write to is
not logged in.

- 1 -

XARGS (1) XARGS (1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags 1 [command [initial-arguments 1 1

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read
from standard input to execute the specified command one or
more times. The number of arguments read for each command
invocation and the manner in which they are combined are deter­
mined by the flags specified.

Command, which may be a shell file, is searched for, using one)s
$PATH. If command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contigu­
ous strings of characters delimited by one or more blanks, tabs, or
new-lines; empty lines are always discarded. Blanks and tabs may
be embedded as part of an argument if escaped or quoted: Charac­
ters enclosed in quotes (single or double) are taken literally, and
the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the inz"t£al­
arguments, followed by some number of arguments read from
standard input (Exception: see -i flag). Flags -i, -I, and -n
determine how arguments are selected for each command invoca­
tion. When none of these flags are coded, the initial-arguments
are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with
the accumulated args. This process is repeated until there are no
more args. When there are flag conflicts (e.g., -I vs. -n), the last
flag has precedence. Flag values are:

-Inumber

-ireplstr

Command is executed for each non-empty numb er
lines of arguments from standard input. The last
invocation of command will be with fewer lines of
arguments if fewer than number remain. A line is
considered to end with the first new-line unless the
last character of the line is a blank or a tab; a trail­
ing blank/tab signals continuation through the next
non-empty line. If number is omitted 1 is assumed.
Option -x is forced.

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence
of replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each
line are thrown away. Constructed arguments may
not grow larger than 255 characters, and option -x
is also forced. {} is assumed for replstr if not
specified.

- 1 -

XARGS (1) XARGS (1)

-nnumber Execute command using as many standard input
arguments as possible, up to number arguments
maximum. Fewer arguments will be used if their
total size is greater than size characters, and for the
last invocation if there are fewer than number argu­
ments remaining. If option -x is also coded, each
number arguments must fit in the size limitation,
else xargs terminates execution.

-t Trace mode: the command and each constructed
argument list are echoed to file descriptor 2 just
prior to their execution.

-p Prompt mode: the user is asked whether to execute
command each invocation. Trace mode (-t) is
turned on to print the command instance to be exe­
cuted, followed by a ?.. prompt. A reply of y
(optionally followed by anything) will execute the
command; anything else, including just a carriage
return, skips that particular invocation of command.

-x Causes xargs to terminate if any argument list
would be greater than size characters; -x is forced
by the options -i and -I. When neither of the
options -i, -I, or -n are coded, the total length of
all arguments must be within the size limit.

-8size The maximum total size of each argument list is set
to size characters; size must be a positive integer
less than or equal to 470. If -8 is not coded, 470 is
taken as the default. Note that the character count
for size includes one extra character for each argu­
ment and the count of characters in the command
name.

-eeo/str Eo/str is taken as the logical end-of-file string.
Underbar (_) is assumed for the logical EOF string
if -e is not coded. -e with no eo/str coded turns off
the logical EOF string capability (underbar is taken
literally). Xargs reads standard input until either
end-of-file or the logical EOF string is encountered.

Xargs will terminate if it receives a return code of -1 from, or if
it cannot execute, command. When command is a shell program,
it should explicitly exit (see sh(I)) with an appropriate value to
avoid accidentally returning with -1.

EXAMPLES
The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 I xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized com­
mands onto one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs > > log

- 2 -

XARGS(l) XARGS(l)

The user is asked which files in the current directory are to be
archived and archives them into arch (1.) one at a time, or (2.)
many at a time.

1. Is I xargs -p -I ar r arch
2. Is I xargs -p -I I xargs ar r arch

The following will execute diff{l) with successive pairs of argu­
ments originally typed as shell arguments:

echo $* I xargs - n2 diff

DIAGNOSTICS
Self explanatory.

- 3-

YACC(l) YACC (1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt 1 grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(l) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tah.c, must be compiled by the C compiler to
produce a program yyparse. This program must be loaded with
the lexical anaiyzer program, yylex, as well as main and yyerror,
an error handling routine. These routines must be supplied by the
user; lex(l) is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which con­
tains a description of the parsing tables and a report on conflicts
generated by ambiguities in the grammar.

If the -d flag is used, the file y.tah.h is generated with the
#define statements that associate theyacc-assigned "token
codes" with the user-declared "token names". This allows source
files other than y.tah.c to access the token codes.

If the -1 flag is given, the code produced in y.tah.c will not con­
tain any #line constructs. This should only be used after the
grammar and the associated actions are fully debugged.

Runtime debugging code is always generated in y.tah.c under
conditional compilation control. By default, this code is not
included when y.tah.c is compiled. However, when yacc's -t
option is used, this debugging code will be compiled by default.
Independent of whether the -t option was used, the runtime
de bugging code is under the control of YYDEBUG, a pre­
processor symboL If YYDEBUG has a non-zero value, then the
debugging code is included. If its value is zero, then the code will
not be included. The size and execution time of a program pro­
duced without the runtime debugging code will be smaller and
slightly faster.

y.output
y.tab.c
y.tab.h
yacc.tmp,
yacc.debug, yacc.acts
jusr jlibjyaccpar

defines for token names

tern porary files
parser prototype for C programs

SEE ALSO
lex(1).
YACC- Yet Another Compiler Compiler in the UNIX System Sup­
port Tools Guide.

- 1 -

YACC (1) YACC(l)

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported
on the standard error output; a more detailed report is found in
the y.output file. Similarly, if some rules are not reachable from
the start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be
active in a given directory at a time.

- 2 -

INTRO (2) INTRO (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls
have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. This is almost always -1;
the individual descriptions specify the details. An error number is
also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an
error has been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in < errno.h >.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file
in some way forbidden except to its owner or super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesnlt, or when one of the directories in
a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified
by pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this
error condition.

5 EIO I/O error
Some physical I/0 error. This error may in some cases
occur on a call following the one to which it actually
applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has

- 1 -

INTRO (2) INTRO (2)

the appropriate permISSIons, does not start with a valid
magic number (see a.out(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively write) request is made to a file which is open
only for writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAiN No more processes
A fork, failed because the system's process table is full or
the user is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a
temporary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement
of text, data, and stack segments requires too many seg­
mentation registers, or if there is not enough swap space
during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address
The system. encountered a hardware fault in attempting to
use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted
or an attempt was made to dismount a device on which
there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is
already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate con­
text, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply ali inappropriate system
call to a device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is
required, for example in a path prefix or as an argument
to chdir(2).

- 2 -

INTRO(2) INTRO (2)

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or k£ll;
reading or writing a file for which lseek has generated a
negative pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no
more opens can be accepted.

24 EMFILE Too many open files
No process may have more than 80 file descriptors open at
a time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt
to open for writing a pure-procedure program that is
being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(2,147,483,647 bytes) or VLIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space
left on the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the
error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not
representable within machine precision.

- 3-

INTRO (2) INTRO (2)

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see
msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system's
name space (see msgctl(2), semctl(2), and shmctl(2)).

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a posi­
tive integer called a process ID. The range of this ID is from 0 to
30,000.

Parent Process ID
A new process is created by a currently active process; see fork(2).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits the
signaling of related processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related process upon ter­
mination of one of the processes in the group; see exz"t(2) and sz"g­
nal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process's
real user ID and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the set-user-ID bit
or set-group ID bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted spe­
cial privileges if its effective user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are spe­
cial processes and are referred to as procO and proc1.

- 4-

INTRO (2) INTRO (2)

ProcO is the scheduler. Proc1 is the initialization process Una).
Proc1 is the ancestor of every other process in the system and is
used to control the process structure.

File Name.
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding \0 (null) and the ASCII code for I (slash).

Note that it is generally unwise to use III, 7, L or] as part of file
names because of the special meaning attached to these characters
by the shell. See sh(1). Although permitted, it is advisable to
avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash U), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string
constructed as follows:

<path-name> ::=< file-name >1 <path-prefix> <file-name> II
<path-prefix> ::=<rtprefix>11 <rtprefix>
< rtprefix > ::=< dirname> /1 < rtprefix > <dirname> /

where <file-name> is a string of 1 to 14 characters other than
the ASCII slash and null, and < dirname > is a string of 1 to 14
characters (other than the ASCII slash and nUll) that names a
directory.

If a path name begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated
as if it named a non-existent file.

Directory_
Directory entries are called links. By convention, a directory con­
tains at least two links, • and ", referred to as dot and dot-dot
respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving path
name searches. A process's root directory need not be the root
directory of the root file system, and is determined by the userz'd
entry in / etc/passwd. The working directory for each process is
determined either by cd(1) or chdir(2).

File Access Permissions.
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following are true:

- 5 -

INTRO(2) INTRO (2)

The process's effective user ID is super-user.

The process's effective user ID matches the user ID of the
owner of the file and the appropriate access bit of the
"owner" portion (0700) of the file mode is set.

The process's effective user ID does not match the user ID
of the owner of the file, and the process's effective group
ID matches the group of the file and the appropriate
access bit of the "group" portion (070) of the file mode is
set.

The process's effective user ID does not match the user ID
of the owner of the file, and the process's effective group
ID does not match the group ID of the file, and the
appropriate access bit of the "other" portion (07) of the
file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure
is referred to as msq£d_ds and contains the following members:

struct i pc_perm ms~erm; / * operation permission struct * /
ushort msg_qnum; /* number of msgs on q */
ushort msg_qbytes; /* max number of bytes on q */
ushort ms~lspid; /* pid of last msgsnd operation */
ushort msg_lrpid; / * pid of last msgrcv operation * /
time_t msg_stime; /* last msgsnd time * /
time_t msg_rtime; /* last msgrcv time */
time_t msg_ctime; /* last change time */

/ * Times measured in secs since * /
/* 00:00:00 GMT, Jan. I, 1970 * /

Msg_perm is a ipc-perm structure that specifies the message
operation permission (see below). This structure includes the fol­
lowing members:

ushort cuid; /* creator user id */
ushort cgid; / * creator group id * /
ushort uid; / * user id * /
ushort gid; / * group id * /
ushort mode; / * r /w permission * /

Msg_qnum is the number of messages currently on the queue.
Msg_qbytes is the maximum number of bytes allowed on the
queue. Msg_Ispid is the process id of the last process that per­
formed a msgsnd operation. Msg_Irpid is the process id of the
last process that performed a msgrcv operation. Msg_stime is
the time of the last msgsnd operation, msg_rtime is the time of
the last msgrcv operation, and msg_ctime is the time of the last
msgctl(2) operation that changed a member of the above struc­
ture.

Message Operation Permissions.
In the msgop(2) and msgctl(2) system call descriptions, the

- 6-

INTRO (2) INTRO (2)

permission required for an operation is interpreted as follows:

00400 Read by user
00200 W ri te by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if
one or more of the following are true:

The process's effective user ID is super-user.

The process's effective user ID matches msg_perm.[c]uid
in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of
msg_perm.mode is set.

The process's effective user ID does not match
msg_perm.[c]uid and the process's effective group ID
matches msg_perm.[c]gid and the appropriate bit of the
((group" portion (060) of msg_perm.mode is set.

The process's effective user ID does not match
msg_perm.[c]uid and the process's effective group ID
does not match msg_perm.[c]gid and the appropriate bit
of the ((other" portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget(2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; / * operation permission struct * /
ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

/ * Times measured in secs since * /
/* 00:00:00 GMT, Jan. I, 1970 */

Sem_perm is a ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the fol­
lowing members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/ * creator user id * /
/ * creator group id * /
/* user id */
/* group id * /
/ * r / a permission * /

The value of sem_nsems is equal to the number of semaphores in
the set. Each semaphore in the set is referenced by a positive
integer referred to as a sem_num. Sem_num values run sequen­
tially from 0 to the value of sem_nsems minus 1. Sem_otime is
the time of the last semop (2) operation, and sem_ctime is the
time of the last semctl(2) operation that changed a member of the
above structure.

- 7 -

INTRO (2) INTRO (2)

A semaphore IS a data structure that contains the following
members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

/ * semaphore value * /
/ * pid of last operation * /
/ * # awaiting semval > cval * /
/* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to the process
ID of the last process that performed a semaphore operation on
this semaphore. Semncnt is a count of the number of processes
that are currently suspended awaiting this semaphore's semval to
become greater than its current value. Semzcnt is a count of the
number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

Semaphore Operation Permissions.
In the semop(2) and semctl(2) system call descriptions, the per­
mission required for an operation is interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if
one or more of the following are true:

The process's effective user ID is super-user.

The process's effective user ID matches sem_perm.[c]uid
in the data structure associated with semt"d and the
appropriate bit of the "user" portion (0600) of
sem_perm.mode is set.

The process's effective user ID does not match
sem_perm.[c]uid and the process's effective group ID
matches sem_perm.[c]gid and the appropriate bit of the
"group" portion (060) of sem_perm.mode is set.

The process's effective user ID does not match
sem_perm.[c]uid and the process's effective group ID
does not match sem_perm.[c]gid and the appropriate bit
of the "other" portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment of
memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as
shmt"d_ds and contains the following members:

struct
int
ushort
ushort
short
time_t

ipc_perm shm-perm;
shm_segsz;
shm_cpid;
shm_Ipid;
shm_nattch;
shm_atime;

- 8-

/ * operation permission struct * /
/ * size of segment * /
/ * creator pid * /
/ * pid of last operation * /
/* number of current attaches */
/ * last attach time * /

INTRO (2)

shm_dtime;
shm_ctime;

/ * last detach time * /
/* last change time */

INTRO (2)

/ * Times measured in secs since * /
/* 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is a ipc_perm structure that specifies the shared
memory operation permission (see below). This structure includes
the following members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/ * creator user i d * /
/* creator group id */
/* user id */
/* group id */
/* r /w permission * /

Shm_segsz specifies the size of the shared memory segment.
Shm_cpid is the process id of the process that created the shared
memory identifier. Shm_Ipid is the process id of the last process
that performed a shmop(2) operation. Shm_nattch is the
number of processes that currently have this segment attached.
Shm_atime is the time of the last shmat operation, shm_dtime
is the time of the last shmdt operation, and shm_ctime is the
time of the last shmctl(2) operation that changed one of the
members of the above structure.

Shared Memory Operation Permissions.
In the shmop(2) and shmctl(2) system call descriptions, the per­
mission required for an operation is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if
one or more of the following are true:

The process's effective user ID is super-user.

The process's effective user ID matches shm_perm.[c]uid
in the data structure associated with shmt"d and the
appropriate bit of the "user" portion (0600) of
shm_perm.mode is set.

The process's effective user ID does not match
shm_perm.[c]uid and the process's effective group ID
matches shm_perm.[c]gid and the appropriate bit of the
"group" portion (060) of shm_perm.mode is set.

The process's effective user ID does not match
shm_perm.[c]uid and the process's effective group ID
does not match shm_perm.[c]gid and the appropriate
bit of the "other" portion (06) of shm_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3).

- 9 -

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the
named file for accessibility according to the bit pattern contained
in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

Read, write, or execute (search) permission is requested for
a null path name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

Write access is requested for a file on a read-only file sys­
tem. [EROFS]

Write access is requested for a pure procedure (shared
text) file that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the
requested access. [EACCES]

Path points outside the process's allocated address space.
[EFAULT]

The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits, members of the file's
group other than the owner have permissions checked with respect
to the "group" mode bits, and all others have permissions checked
with respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), stat(2).

- 1 -

ACCT (2) ACCT (2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
Acct is used to enable or disable the system's process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an exit call or a
signal; see exit(2) and s£gnal(2). The effective user ID of the cal­
ling process must be super-user to use this call.

Path points to a path name naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super­
user. [EPERM]

An attempt is being made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory.
[ENOTDIR]

One or more components of the accounting file's path
name do not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file.
[EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system. [EROFS]

Path points to an illegal address. [EF AULT]

RETURN VALUE
Upon successful completion, a value of a is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

- 1 -

ALARM(2) ALARM (2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process's alarm clock to send the sig­
nal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see 8ignal(2).

Alarm requests are not stacked; successive calls reset the calling
process's alarm clock.

If 8ec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the cal­
ling process's alarm clock.

SEE ALSO
pause(2), signal(2).

- 1 -

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
ehar *endds;

ehar *sbrk (iner)
int iner;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's data segment; see exec (2). The
change is made by resetting the process's break value and allocat­
ing the appropriate amount of space. The break value is the
address of the first location beyond the end of the data segment.
The amount of allocated space increases as the break value
increases.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. [ncr can be negative, in which case the
amount of allocated space is decreased. Sbrk clears only the page
actually allocated, starting at a page boundary.

Brk and sbrk will fail without making any change in the allocated
space if one or more of the following are true:

Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see
ulimit(2)). [ENOMEM]

Such a change would result in the break value being
greater than or equal to the start address of any attached
shared memory segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2).

- 1 -

· CHDffi(2) CHDffi(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chd£r causes the
named directory to become the current working directory, the
starting point for path searches for path names not beginning with
/.
Chd£r will fail and the current working directory will be
unchanged if one or more of the following are true:

A component of the path name is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path
name. [EACCES]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chroot(2}.

- 1 -

CHMOD(2) CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access
permission portion of the named file's mode according to the bit
pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute (search) by others

The effective user ID of the process must match the owner of the
file or be super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates.
Thus, when the next user of the file executes it, the text need not
be read from the file system but can simply be swapped in, saving
time.

Chmod will fail and the file mode will be unchanged if one or
more of the following are true:

A component of the path prefix is not a directory.
IENOTDIR]

The named file does not exist. IENOENT]

Search permission is denied on a component of the path
prefix. IEACCES]

The effective user ID does not match the owner of the file
and the effective user ID is not super-user. IEPERM]

The named file resides on a read-only file system. IEROFS]

Path points outside the process's allocated address space.
IEFAULT]

- 1 -

CHMOD(2) CHMOD (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

- 2 -

CHOWN(2) CHOWN(2)

NAME
chown - change owner arid group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values contained
in owner and group respectively.

Only processes with effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respec-
tively, will be cleared. .

Chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory.
IENOTDIR]

The named file does not exist. IENOENT]

Search permission is denied on a component of the path
prefix. IEACCES]

The effective user ID does not match the owner of the file
and the effective user ID is not super-user. IEPERM]

The named file resides on a read-only file system. IEROFS]

Path points outside the process's allocated address space.
IEFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).

- 1 -

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes
the named directory to become the root directory, the starting
point for path searches for path names beginning with /.

The effective user ID of the process must be super-user to change
the root directory.

The •• entry in the root directory is interpreted to mean the root
directory itself. Thus, •• cannot be used to access files outside the
subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

Any component of the path name is not a directory.
[ENOTDffi]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chdir(2}.

- 1 -

CLOSE(2) CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, lentl,
or pipe system call. Close closes the file descriptor indicated by
fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

- 1 -

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
Great creates a new ordinary file or prepares to rewrite an existing
file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
process's effective user ID, the file's group ID is set to the process's
effective group ID, and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are
cleared. See umask(2).

The "save text image after execution bit" of the mode is
cleared. See chmod(2).

Upon successful completion, a non-negative integer, namely the
file descriptor, is returned and the file is open for writing, even if
the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open
across exec system calls. See Jcntl(2). No process may have more
than 80 files open simUltaneously. A new file may be created with
a mode that forbids writing.

Great will fail if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file
is to be created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file
system. [EROFS]

The file is a pure procedure (shared text) file that is being
executed. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

Eighty (80) file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the

- 1 -

CREAT(2) CREAT(2)

file descriptor, is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
close(2), dup(2), lseek(2), open(2), read(2), umask(2), write(2).

- 2 -

DUP (2) DUP (2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fades is a file descriptor obtained from a creat, open, dup, Jcntl,
or pipe system call. Dup returns a new file descriptor having the
following in common with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share one file
pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system
calls. See Jcntl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Eighty (80) file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

" 'jI

- 1 -

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ••• , argn, 0)
char *path, *argO, *argl, ••• , *argn;

int execv (path, argv)
char *path, *argv[);

int execle (path, argO, argl, ••• , argn, 0, envp)
char *path, *argO, *argl, ••• , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, argl, ••• , argn, 0)
char *file, *argO, *argl, ••• , *argn;

int execvp (file, argv)
char *file, *argv[);

DESCRIPTION
Exec in all its forms transforms the calling process into a new pro­
cess. The new process is constructed from an ordinary, executable
file called the new process file. This file consists of a header (see
a. out(4)), a text segment, and a data segment. The data segment
contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful exe c because the calling
process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **a.rgv, **envp;

where argc is the argument count and argv is an array of charac­
ter pointers to the arguments themselves. AB indicated, argc is
conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
line "PATH =" (see environ(5)). The environment is supplied by
the shell (see sh(l)).

ArgO, argl, ... , argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and
point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new
process. By convention, argv must have at least one member, and
it must point to a string that is the same as path (or its last com­
ponent). Argv is terminated by a null pointer.

- 1 -

EXEC (2) EXEC (2)

Envp is an array of character pointers to null-terminated strings.
These strings' constitute the environment for the new process.
Envp is terminated by a null pointer. For execl and execv, the C
run-time start-off routine places a pointer to the calling process's
environment in the global cell:

extern cha.r **environ;
and it is used to pass the calling process's environment to the new
process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
Jcntl(2). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process
will be set to be ignored by the new process. Except for SIG­
PHONE and SIGWIND, signals set to be caught by the calling
process will be set to terminate new process; see signal(2).

If the set-user-ID mode bit of the new process file is set (see
chmod(2)), exec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see proji.l(2).

The new process also inherits the following attributes from the
calling process:

nice value (see nice (2))
process ID
parent process ID
process group ID
semadj values (see semop(2))
tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
utime, stime, cutime, and cstime (see times(2))

Exec will fail and return to the calling process if one or more of
the following are true:

One or more components of the new process file's path
name do not exist. [ENOENTj

A component of the new process file's path prefix is not a
directory. [ENOTDIRj

- 2 -

EXEC(2) EXEC (2)

Search permission is denied for a directory listed in the
new process file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission.
[EACCES]

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.
[ETXTBSY]

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes.
[E2BIG]

The new process file is not as long as indicated by the size
values in its header. [EFAULT]

Path, argv, or envp point to an illegal address. [EF AUL T]

RETURN VALUE
If exec returns to the calling process an error has occurred; the
return value will be -1 and errno will be set to indicate the error.

SEE ALSO
exit(2), fork(2), environ(5).

- 3 -

EXIT (2) EXIT (2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION
Ex£t terminates the calling process with the following conse­
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait, it is notified of the calling process's termination and
the low order eight bits (i.e., bits 0377) of status are made
available to it; see wa~·t(2).

If the parent process of the calling process is not executing
a wa£t, the calling process is transformed into a zombie
process. A zombie process is a process that only occupies
a slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that
it occupies is partially overlaid with time accounting infor­
mation(see <sysjproc.h» to be used by tz'mes.

The parent process 10 of all of the calling process's exist­
ing child processes and zombie processes is set to 1. This
means the initialization process (see z'ntro (2)) inherits each
of these processes.

Each attached shared memory segment is detached and
the value of shm_nattach in the data structure associ­
ated with its shared memory identifier is decremented by
1.

For each semaphore for which the calling process has set a
semadj value (see semop(2)), that semadj value is added
to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock
is performed [see plock (2)].

If the process 10, tty group 10, and process group 10 of the
calling process are equal, (i.e. it is a process group leader),
the SIGHUP signal is sent to each process that has a pro­
cess group II) equal to that of the calling process.

If the process is a process group leader, all processes in its
group are made members of the null group.

The C function exz't may cause cleanup actions before the process
exits. The function _ex£! circumvents all cleanup.

SEE ALSO
intro(2), semop(2), signal(2), wait(2).

- 1 -

EXIT(2) EXIT(2)

WARNING
See WARNING in signal(2).

- 2 -

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include < fentl.h >
int fentl (fildes, emd, arg)
int fildes, emd, arg;

DESCRIPTION
Fcntl provides for control over open files. Fades is an open file
descriptor obtained from a creat, open, dup, Jcntl, or p£pe system
call.

The cmds available are:

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETLK

F_SETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) sys­
tem calls.

Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0 the file
will remain open across exec, otherwise the file will
be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to
the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can
be set; see Jcntl(S).

Get the first block which blocks the lock description
given by the variable of type struct flock pointed to
by arg. The information retrieved overwrites the
information passed to Jcntl in the flock structure. If
no lock is found that would prevent this lock from
being created, then the structure is passed back
unchanged except for the lock type which will be set
to F_UNLCK.

Set or clear a file segment lock according to the vari­
able of type struct flock pointed to by arg [see
Jcntl(S)]. The cmd F _SETLK is used to establish
read (F _RDLCK) and write (F _ WRLCK) locks, as
well as remove either type of lock (F _UNLCK). If a
read or write lock cannot be set Jcntl will return

- 1 -

FCNTL (2) FCNTL (2)

immediately with an error value of -1.

F _SETLKW This cmd is the same as F _SETLK except that if a
read or write lock is blocked by other locks, the pro­
cess will sleep until the segment is free to be locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any process from read locking or write lock­
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write
access.

The structure describes the type (Ctype), starting offset (Cstart),
relative offset (Cwhence), size (Clen), process id (Cp£d), and sys­
tem id (Csysz"d) of the segment of the file to be affected. The pro­
cess id and system id fields are used only with the F _GETLK cmd
to return the values for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative
relative to the beginning of the file. A lock may be set to always
extend to the end of the file by setting Clen to zero (0). If such a
lock also has Cwhere and Cstart set to zero (0), the whole file will
be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for either end.
Locking a segment that is already locked by the calling process
causes the old lock type to be removed and the new lock type to
take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that pro­
cess or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a Jork(2) system call.

When mandatory file and record locking is active on a file [see
chmod(2)]' read and wr£te system calls issued on the file will be
affected by the record locks in effect.

Fcntl will fail if one or more of the following are true:

[EBADF]

[EINVAL]

[EINVAL]

[EACCES]

F£ldes is not a valid open file descriptor.

Cmd is F _DUPFD. Arg is either negative, or greater
than or equal to, the configured value for the max­
imum number of open file descriptors allowed each
user.

Cmd is F _GETLK, F _SETLK, or SETLKW and arg
or the data it points to is not valid.

Cmd is F _SETLK, the type of lock (Ctype) is a read
(F _RDLCK) lock and the segment of a file to be
locked is already write locked by another process or
the type is a write lock (F _ WRLCK) and the seg­
ment of a file to be locked is already read or write
locked by another process.

- 2 -

FCNTL(2) FCNTL(2)

[ENOLCK] Gmd is F _SETLK or F _SETLKW, the type of lock
is a read or write lock, and there are no more record
locks available (too many file segments locked).

[EDEADLK] Gmd is F _SETLKW, the lock is blocked by some
lock from another process, and putting the calling
process to sleep, waiting for that lock to become
free, would cause a deadlock.

[EFAULT] Gmd is F _SETLK, arg points outside the program
address space.

SEE ALSO
close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fcntl(5).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as
follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETLK

F_SETLK

A new file descriptor.

Value of flag (only the low-order bit is defined).

Value other than -1.

Value of file flags.

Value other than -1.

Value other than -1.

Value other than -1.

F _SETLKW Value other than -1.

WARNINGS
Because in the future the variable errno will be set to EAGAlN
rather than EACCES when a section of a file is already locked by
another process, portable application programs should expect and
test for either value.

- 3-

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
This means the child process inherits the following attributes from
the parent process:

environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., SIG_DFL, SIG_ING, func­
tion address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nz"ce (2))
all attached shared memory segments (see shmop(2))
process group ID
tty group ID (see exz"t(2) and signal(2))
trace flag (see ptrace(2) request 0)
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e.,
the process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a
common file pointer with the corresponding file descriptor
of the parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not inherited
by the child (see plock(2)).

The child process's utime, stime, cutime, and cstime are
set to O.

The child process has a different amount of time left until
an alarm clock signal (see alarm(2)).

Fork will fail and no child process will be created if one or more
of the following are true:

The system-imposed limit on the total number of
processes under execution would be exceeded. [EAGAIN]

- 1 -

FORK(2) FORK(2)

The system-imposed limit on the total number of
processes under execution by a single user would be
exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and ermo is set to indicate
the error.

SEE ALSO
exec(2), times(2), wait(2).

- 2 -

GETPID (2) GETPID (2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent
process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

- 1 -

GETUID(2) GETUID (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real
group, and effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

- 1 -

IOCTL(2) IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
ioctl (fildes, request, arg)

DESCRIPTION
Joetl performs a variety of functions on character special files
(devices). The writeups of various devices in Section 7 discuss
how ioctl applies to them.

Joetl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special device.
[ENOTTY]

Request or arg is not valid. See Section 7. [EINV ALI

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set
to indicate the error.

- 1 -

KILL (2) KILL (2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The pro­
cess or group of processes to which the signal is to be sent is
specified by pid. The signal that is to be sent is specified by sz"g
and is either one from the list given in signal(2), or O. If sig is 0
(the null signal), error checking is performed but no signal is actu­
ally sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the
real or effective user ID of the receiving process, unless the effective
user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are spe­
cial processes (see intro(2)) and will be referred to below as procO
and prod respectively.

If pz"d is greater than zero, sig will be sent to the process whose
process ID is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and
prod whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user ID of the sender is not super­
user, sig will be sent to all processes excluding procO and prod
whose real user ID is equal to the effective user ID of the sender.

If pz"d is -1 and the effective user ID of the sender is super-user,
sig will be sent to all processes excluding procO and prod.

If pid is negative but not -1, sz"g will be sent to all processes
whose process group ID is equal to the absolute value of pZ"d.

Kz"ll will fail and no signal will be sent if one or more of the fol­
lowing are true:

Big is not a valid signal number. [EINY AL]

No process can be found corresponding to that specified
by pid. [ESRCH]

The user ID of the sending process is not super-user, and
its real or effective user ID does not match the real or
effective user ID of the receiving process. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

- 1 -

LINK (2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION
Pathl points to a path name naming an existing file. Path2
points to a path name naming the new directory entry to be
created. L~'nk creates a new link (directory entry) for the existing
file.

Lz"nk will fail and no link will be created if one or more of the fol­
lowing are true:

A component of either path prefix is not a directory.
[ENOTDIR]

A component of either path prefix does not exist.
[ENOENT]

A component of either path prefix denies search permis­
sion. [EACCES]

The file named by pathl does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by p athl is a directory and the effective
user ID is not super-user. [EPERM]

~ The link named by path2 and the file named by pathl are
--on different logical devices (file systems). [EXDEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a
mode that denies write permission. [EACCES]

The requested link requires writing in a directory on a
read-only file system. [EROFS]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
unlink(2).

- 1 -

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or
Icntl system call. Lseek sets the file pointer associated with fildes
as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location
plus offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location as meas­
ured in bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

F£ldes is not an open file descriptor. [EBADF]

Fades is associated with a pipe or fifo. [ESPIPE]

Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal]

The resulting file pointer would be negative. [EINV AL]

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

- 1 -

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dey)
char *path;
int mode, dey;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode, where
the value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the follow­
ing

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user ID. The
file's group ID is set to the process's effective group ID.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask(2). If mode indicates
a block or character special file, dev is a configuration dependent
specification of a character or block I/O device. If mode does not
indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other
than FIFO special.

Mknod will fail and the new file will not be created if one or more
of the following are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory.
[ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located
on a read-only file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space.
[EFAULT]

- 1 -

MKNOD (2) MKNOD(2)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

- 2 -

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dz'r. is the standard UNIX PC directory for mounting
floppy diskettes. Spec and dir are pointers to path names.

Upon successful completion, references to the file dz'r will refer to
the root directory on the mounted file system.

The low-order bit of rWflag is used to control write permission on
the mounted file system; if I, writing is forbidden, otherwise writ­
ing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERMj

Any of the named files does not exist. [ENOENTj

A component of a path prefix is not a directory.
[ENOTDIRj

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dz'r is not a directory. [ENOTDIR]

Spec or d£r points outside the process's allocated address
space. [EF AUL T]

Dz'r is currently mounted on, is someone's current working
directory or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted.
[EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(lM), umount(2).

- 1 -

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data
structure associated with msqZ"d into the structure
pointed to by buf. The contents of this structure
are defined in intro(2). {READ}

Set the value of the following members of the data
structure associated with msqZ"d to the corresponding
value found in the structure pointed to by buf:

ms~perm.uid
ms~erm.gid

ms~perm.mode /* only low 9 bits */
ms~qbytes

This cmd can only be executed by a process that has
an effective user ID equal to either that of super user
or to the value of msg_perm. uid in the data struc­
ture associated with msqZ"d. Only super user can
raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by
msqid from the system and destroy the message
queue and data structure associated with it. This
cmd can only be executed by a process that has an
effective user ID equal to either that of super user or
to the value of msg_perm.uid in the data structure
associated with msq£d.

Msgctl will fail if one or more of the following are true:

Msqid is not a valid message queue identifier. [EINV AL]

Cmd is not a valid command. [EINV AL]

Cmd is equal to IPC_STAT and {READ} operation per­
mission is denied to the calling process (see z"ntro(2)).
[EACCES]

Cmd is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal to that of super
user and it is not equal to the value of msg_perm.uid in
the data structure associated with msq£d. [EPERM]

Cmd is equal to IPC_SET, an attempt is being made to
increase to the value of msg_qbytes, and the effective

- 1 -

MSGCTL(2) MSGCTL(2)

user ID of the calling process is not equal to that of super
user. [EPERM]

Bufpoints to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errna is set to indicate the error.

SEE ALSO
msgget(2), msgop(2), stdipc(3C).

- 2 -

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data
structure (see intro(2)) are created for key if one of the following
are true:

Key is equal to IPC..;.,PRIV ATE.

Key does not already have a message queue identifier
associated with it, and (msgftg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and
msg_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perIIi.mode are set equal to
the low-order 9 bits of msgftg.

Msg_qnum, msg_lspid, msg_Irpid, msg_stime, and
rnsg_rtime a.re set equal to O.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

A message queue identifier exists for key but operation
permission (see intro(2)) as specified by the low-order 9
bits of msgftg would not be granted. [EACCES]

A message queue identifier does not exist for key and
(msgftg & IPC..;.CREAT) is "false". [ENOENT]

A message queue identifier is to be created but the system
imposed limit on the maximum number of allowed mes­
sage queue identifiers system wide would be exceeded.
[ENOSPC]

A message queue identifier exists for key but ((msgftg &
IPC_CREAT) & (msgftg & lPC_EXCL)) is "true".
[EEXIST]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a mes­
sage queue identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- 1 -

MSGGET(2) MSGGET (2)

SEE ALSO
msgctl(2), msgop(2), stdipc(3C).

- 2 -

MSGOP(2) MSGOP (2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the
message queue identifier specified by msqid. {WRITE} Msgp
points to a structure containing the message. This structure is
composed of the following members:

long mtype; /* message type */
char mtext[]; / * message text * /

Mtype is a positive integer that can be used by the receiving pro­
cess for message selection (see msgrcv below). Mtext is any text
of length msgsz bytes. Msgsz can range from 0 to a system
imposed maximum.

Msgftg specifies the action to be taken if one or more of the fol­
lowing are true:

The number of bytes already on the queue is equal to
msg_qbytes (see intro(2)).

The total number of messages on all queues system wide is
equal to the system imposed limit.

These actions are as follows:

If (msgftg & IPC_NOWAIT) is "true", the message will
not be sent and the calling process will return immedi­
ately.

If (msgftg & IPC_NOW AIT) is "false", the calling process
will suspend execution until one of the following occurs:

The condition responsible for the suspension no
longer exists, in which case the message is sent.

Msqid is removed from the system (see
msgctl(2)). When this occurs, errno is set equal
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and

- 1 -

MSGOP(2) MSGOP (2)

the calling process resumes execution in the
manner prescribed in s£gnal(2)).

Msgsnd will fail and no message will be sent if one or more of the
following are true:

Msqid is not a valid message queue identifier. [EINV AL]

Operation permission is denied to the calling process (see
intro(2)). [EACCES]

Mtype is less than 1. [EINV AL]

The message cannot be sent for one of the reasons cited
above and (msgfig & IPC_NOWAIT) is "true". [EAGAIN]

Msgsz is less than zero or greater than the system imposed
limit. [EINVAL]

Msgp points to an illegal address. [EF AUL T]

Upon successful completion, the following actions are taken with
respect to the data structure associated with msq£d (see intro (2)).

Msg_qnum is incremented by 1.

Msg_Ispid is set equal to the process ID of the calling
process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the mes­
sage queue identifier specified by msq£d and places it in the struc­
ture pointed to by msgp. {READ} This structure is composed of
the following members:

long mtype;
char mtext[];

/ * message type * /
/ * message text * /

Mtype is the received message's type as specified by the sending
process. Mtext is the text of the message. Msgsz specifies the size
in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG_NOERROR)
is "true". The truncated part of the message is lost and no indi­
cation of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type
msgtyp is received.

If msgtyp is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of
msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process
will return immediately with a return value of -1 and
errno set to ENOMSG.

- 2 -

MSGOP(2) MSGOP (2)

If (msgftg & IPC_NOWAIT) is "false)), the calling process
will suspend execution until one of the following occurs:

A message of the desired type is placed on the
queue.

Msqid is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value
of -1 is returned.

The calling process receives a signal that is to be
caught. In this case a message is not received
and the calling process resumes execution in the
manner prescribed in signal(2)).

Msgrcv will fail and no message will be received if one or more of
the following are true:

Msqz'd is not a valid message queue identifier. [EINV AL]

Operation permission is denied to the calling process.
[EACCES]

Msgsz is less than O. [EINV AL]

Mtext is greater than msgsz and (msgfig &
MSG_NOERROR) is "false)). [E2BIG]

The queue does not contain a message of the desired type
and (msgtyp & IPC_NOWAIT) is "true". [ENOMSG]

Msgp points to an illegal address. [EF AULT]

Upon successful completion, the following actions are taken with
respect to the data structure associated with msq£d (see intro (2)).

Msg_qnum is decremented by 1.

Msg_Irpid is set equal to the process ID of the calling
process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value
of -1 is returned to the calling process and errno is set to EINTR.
If they return due to removal of msqid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actu­
ally placed into mtext.

Otherwise, a value of -1 is returned and errna is set to indicate
the error.

SEE ALSO
msgctl(2), msgget(2), stdipc(3C).

- 3-

NICE (2) NICE (2)

NAME
nice - change priority of a process

SYNOPSIS
int niee (iner)
int iner;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling pro­
cess. A process's nice value is a positive number for which a more
positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative
and the effective user ID of the calling process is not super-user.
[EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a value of -I is returned and errno is set to
indicate the error.

SEE ALSO
nice(I), exec(2).

- 1 -

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include < rcntl.h >
int open (pa.th, oflag [, mode 1)
char *path;
int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file
descriptor for the named file and sets the file status flags according
to the value of ofiag. Ofiag values are constructed by or-ing flags
from the following list (only one of the first three flags below may
be used):

O_RDONLY Open for reading only.

0_ WRONL Y Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes.
See read(2) and wr£te(2).

When opening a FIFO with O_RDONL Y or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return
without delay. An open for writing-only
will return an error if no process currently
has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until
a process opens the file for writing. An
open for writing-only will block until a
process opens the file for reading.

When opening a file associated with a communica­
tion line:

If O_NDELAY is set:

The open will return without waiting for
carrier.

If O_NDELAY is clear:

The open will block until carner IS

present.

O_APPEND If set, the file pointer will be set to the end of the
file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise,
the file's owner ID is set to the process's effective

- 1 -

OPEN(2)

O_TRUNC

OPEN(2)

user ID, the file's group ID is set to the process's
effective group ID, and the low-order 12 bits of the
file mode are set to the value of mode modified as
follows (see creat(2)):

All bits set in the process's file mode crea­
tion mask are cleared. See umask(2).

The "save text image after execution bit"
of the mode is cleared. See chmod(2).

If the file exists, its length is truncated to 0 and
the mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if
the file exists.

Upon successful completion a non-negative integer, the file
descriptor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See [cntl(2).

No process may have more than 80 file descriptors open simultane­
ously.

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory.
[ENOTDIR]

O_CREAT is not set and the named file does not exist.
[ENOENT]

A component of the path prefix denies search permission.
[EACCES]

Oftag permission is denied for the named file. [EACCES]

The named file is a directory and oftag is write or
read/write. [EISDIR]

The named file resides on a read-only file system and
oflag is write or read/write. [EROFS]

Eighty (80) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file,
and the device associated with this special file does not
exist. [ENXIO]

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write. [ETXTBSY]

Path points outside the process's allocated address space.
[EFAULT]

O_CREAT and O_EXCL are set, and the named file exists.
[EEXIST]

- 2-

OPEN (2) OPEN(2)

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading. [ENXIO]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fcntl(2), Iseek(2), read(2), write(2).

- 3 -

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause will
not return.

If the signal is caught by the calling process and control is
returned from the signal catching-function (see signal(2)), the cal­
ling process resumes execution from the point of suspension; with
a return value of -1 from pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

- 1 -

PIPE (2) PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file
descriptors, fildes [0] and fildes [1]. Fildes [0] is opened for reading
and fildes [11 is opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before
the writing process is blocked. A read on file descriptor fildes [0]
accesses the data written to fildes [11 on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultane­
ously.

Pipe will fail if 19 or more file descriptors are currently open.
[EMFILE]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
sh(I), read(2), write(2).

- 1 -

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg­
ments (process lock) into memory. Locked segments are immune
to all routine swapping. Plock also allows these segments to be
unlocked. The effective user ID of the calling process must be
super-user to use this call. Op specifies the following:

PROCLOCK - lock text and data segments into
memory (process lock)

TXTLOCK - lock text segment into memory (text
lock:) .

DATLOCK - lock data segment into memory (data
lock)

UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or
more of the following are true:

The effective user ID of the calling process is not super­
user. [EPERM]

Op is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process.
[EINVAL]

Op is equal to TXTLOCK and a text lock, or a process
lock already exists on the calling process. [EINV AL]

Op is equal to DATLOCK and a data lock, or a process
lock already exists on the calling process. [EINV AL]

Op is equal to UNLOCK and no type of lock exists on the
calling process. [EINV AL]

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

- 1 -

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by
bufsiz. After this call, the user's program counter (pc) is exam­
ined each clock tick (60th second); offset is subtracted from it,
and the result multiplied by scale. If the resulting number
corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of
pc's to words in buff; 077777 (octal) maps each pair of instruction
words together. 02(8) maps all instructions onto the beginning of
buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bu/siz of O. Profiling is turned off when an
exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause
a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(1), monitor(3C).

BUGS
ProjilO is not supported on the UNIX PC.

- 1 -

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptraee provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple­
mentation of breakpoint debugging; see sdb(1). The child process
behaves normally until it encounters a signal (see signal(2) for the
list), at which time it enters a stopped state and its parent is
notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using ptraee.
Also, the parent can cause the child either to terminate or con­
tinue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken
by ptrae e and is one of the following:

o This request must be issued by the child process if it
is to be traced by its parent. It turns on the child's
trace flag that stipulates that the child should be
left in a stopped state upon receipt of a signal rather
than the state specified by June; see s£gnal(2). The
p,'d, addr, and data arguments are ignored, and a
return value is not defined for this request. Peculiar
results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent pro­
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in
the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP-Us), request 1 returns a word from I space,
and request 2 returns a word from D space. If I and
D space are not separated (as on the 3B-20 and
VAX-ll/780), either request 1 or request 2 may be
used with equal results. The data argument is
ignored. These two requests will fail if addr is not
the start address of a word, in which case a value of
-1 is returned to the parent process and the parent's
errno is set to EIO,

3 With this request, the word at location addr in the
child's USER area in the system's address space (see
<sys/user.h» is returned to the parent process.
Addresses range from 0 to 1024. The data argument
is ignored. This request will fail if addr is not the
start address of a word or is outside the USER area,
in which case a value of -1 is returned to the parent
process and the parent's errno is set to EIO,

- 1 -

PTRACE(2) PTRACE(2)

4, 5 With these requests, the value given by the data
argument is written into the address space of the
child at location addr. Request 4 writes a word into
I space, and request 5 writes a word into D space.
Upon successful completion, the value written into
the address space of the child is returned to the
parent. These two requests will fail if addr is a loca­
tion in a pure procedure space and another process
is executing in that space, or addr is not the start
address of a word. Upon failure a value of -1 is
returned to the parent process and the parent's
ermo is set to EIO.

6 With this request, a few entries in the child's USER
area can be written. Data gives the value that is to
be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (DO-D7, AO-A7)

certain bits of the Processor Status Word
(all bits except SUPERVISOR state and
interrupt level)

the PC register

7 This request causes the child to resume execution. If
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argument is
a valid signal number, the child resumes execution
as if it had incurred that signal and any other pend­
ing signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful com­
pletion, the value of data is returned to the parent.
This request will fail if data is not 0 or a valid signal
number, in which case a value of -1 is returned to
the parent process and the parent's errno is set to
EIO.

8 This request causes the child to terminate with the
same consequences as exit(2).

9 This request sets the trace bit in the Processor
Status Word of the child and then executes the same
steps as listed above for request 7. The trace bit
causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of
the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility
on subsequent exec(2) calls. If a traced process calls exec, it will
stop before executing the first instruction of the new image show­
ing signal SIGTRAP.

- 2 -

PTRACE(2) PTRACE(2)

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

SEE ALSO

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not exe­
cuted a ptrace with request O. [ESRCH]

sdb(l), exec(2), signal(2), wait(2).

- 3 -

READ (2) READ (2)

NAME
read - read from file

SYNOPSIS
int read (fildes, bur, nbyte)
int fildes;
char *bur;
unsigned nbyte;

DESCRIPTION
Fz'ldes is a file descriptor obtained from a creat, open, dup, Icntl,
or pipe system call.

Read attempts to read nbyte bytes from the file associated with
fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with fildes. Upon return
from read, the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes
actually read and placed in the buffer; this number may be less
than nbyte if the file is associated with a communication line (see
ioctl(2) and termio(7)), or if the number of bytes left in the file is
less than nbyte bytes. A value of 0 is returned when an end-of-file
has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is
written to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available:

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data
becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading.
[EBADF]

Bul points outside the allocated address space. [EF AUL T]

RETURN VALUE
Upon successful completion a non-negative integer is returned
indicating the number of bytes actually read. Otherwise, a -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntI(2), ioctl(2), open(2), pipe(2), termio(7), win­
dow(7).

- 1 -

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sern.h>

int sernetl (sernid, sernnurn, ernd, arg)
int sernid, ernd;
int sernnurn;
union sernun {

int val;
struet sernid_ds *buf;
ushort array[];

} arg;

DESCRIPTION
Bemett provides a variety of semaphore control operations as
specified by emd.

The following emds are executed with respect to the semaphore
specified by semid and semnum:

GETVAL Return the value of semval (see intro(2)).
{READ}

SETVAL

GETPID

GETNCNT

GETZCNT

Set the value of semval to argo val.
{ALTER} When this cmd is successfully
executed the semadj value corresponding to
the specified semaphore in all processes is
cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following emds return and set, respectively, every semval in
the set of semaphores.

GETALL Place semvals into array pointed to by
arg.array. {READ}

SETALL Set semvals according to the array pointed
to by arg.array. {ALTER} When this cmd
is successfully executed the semadj values
corresponding to each specified semaphore
in all processes are cleared.

The following emd s are also available:

IPC_STAT Place the current value of each member of
the data structure associated with semid
into the structure pointed to by argo buf.
The contents of this structure are defined
in intro(2). {READ}

Set the value of the following members of
the data structure associated with semid to

- 1 -

SEMCTL(2) SEMCTL(2)

the corresponding value found in the struc­
ture pointed to by argo but:
sein_perm. u id
sem_perm.gid
sem_perm.mode / * only low g bits * /
This command can only be executed by a
process that haS an effective user ID equal
to either that of super user or to the value
of sem_perm.uid in the data structure
associated with semid.

IPC_RMID Remove the semaphore identifier specified
by semid from the system and destroy the
set of semaphores and data structure asso­
ciated with it. This command can only be
executed by a process that has an effective
user ID equal to either that of super user or
to the value of sem_perm.uid in the data
structure associated with semid.

Semett will fail if one or more of the following are true:

Semid is not a valid semaphore identifier.
[EINVAL]

Semnum is less than zero or greater than
sem_nsems. [EINV AL]

Cmd is not a valid command. [EINVAL]

Operation permission is denied to the calling pro­
cess (see intro(2)). [EACCESj

Cmd is SETV AL or SET ALL and the value to
which semval is to be set is greater than the sys­
tem imposed maximum. [ERANGEj

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal
to that of super user and it is not equal to the
value of sem_perm.uid in the data structure
associated with semid. [EPERMj

Arg.bufpoints to an illegal addresS. [EFAULTj

RETURN VALUE
Upon successful completion, the value returned depends on cmd
as follows:

GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A vaiue of o.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
semget(2), semop(2), stdipc(3C).

- 2 -

SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set con­
taining nsems semaphores (see intro(2)) are created for key if one
of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associ­
ated with it, and (semfig & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new sema­
phore identifier is initialized as follows:

Sem_perm.cuid, sem_perm. uid, sem_perm.cgid, and
sem_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to
the low-order 9 bits of semfig.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal
to the current time.

Semget will fail if one or more of the following are true:

Nsems is either less than or equal to zero or greater than
the system imposed limit. [EINV AL]

A semaphore identifier exists for key but operation permis­
sion (see intro(2)) as specified by the low-order 9 bits of
semflg would not be granted. [EACCES]

A semaphore identifier exists for key but the number of
semaphores in the set associated with it is less than nsems
and nsems is not equal to zero. [EINV AL]

A semaphore identifier does not exist for key and (semfig
& IPC_CREAT) is "false)). [ENOENT]

A semaphore identifier is to be created but the system
imposed limit on the maximum number of allowed sema­
phore identifiers system wide would be exceeded.
[ENOSPC]

A semaphore identifier is to be created but the system
imposed limit on the maximum number of allowed sema­
phores system wide would be exceeded. [ENOSPC]

- 1 -

SEMGET(2) SEMGET(2)

A semaphore identifier exists for key but ((semflg &
IPC_CREAT) & (semflg & IPC_EXCL)) is "true".
[EEXIST]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
semaphore identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
semctl(2), semop(2), stdipc(3C).

- 2-

SEMOP (2) SEMOP (2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf (*sops)O;
int nsops;

DESCRIPTION
Semop is used to atomically perform an array of semaphore opera­
tions on the set of semaphores associated with the semaphore
identifier specified by semid. Sops is a pointer to the array of
semaphore-operation structures. Nsops is the number of such
structures in the array. The contents of each structure includes
the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; / * operation flags * /

Each semaphore operation specified by sem_op is performed on
the corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will
occur: {ALTER}

If semval (see intro(2)) is greater than or equal to
the absolute value of sem_op, the absolute value
of sem_op is subtracted from semval. Also, if
(sem-fig & SEM_UNDO) is "true)), the absolute
value of sem_op is added to the calling process's
semadj value (see exit(2)) for the specified sema­
phore.

If semval is less than the absolute value of
sem_op and (sem-flg & IPC_NOW AIT) IS

"true", semop will return immediately.

If semval is less than the absolute value of
sem_op and (sem-flg & IPC_NOW AIT) is
"false)), semop will increment the semncnt asso­
ciated with the specified semaphore and suspend
execution of the calling process until one of the
following occurs:

Semval becomes greater than or equal to the
absolute value of sem_op. When this occurs,
the value of semncnt associated with the
specified semaphore is decremented, the absolute
value of sem_op is subtracted from semval and,
if (sem-fig & SEM_UNDO) is ((true", the abso­
lute value of sem_op is added to the calling

- 1 -

SEMOP (2) SEMOP(2)

process's semadj value for the specified sema­
phore.

The semid for which the calling process is await­
ing action is removed from the system (see
semctl(2)). When this occurs, errno is set equal
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semncnt associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in s£gnal(2).

If sem_op is a positive integer, the value of sem_op is
added to semval and, if (sem.Jlg & SEM_UNDO) is
"true", the value of sem_op is subtracted from the cal­
ling process's semadj value for the specified semaphore.
{ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem.Jlg &
IPC_NOWAIT) is "true", semop will return
immediately.

If semval is not equal to zero and (sem.Jlg &
IPC_NOWAIT) is "false", semop will increment
the semzcnt associated with the specified sema­
phore and suspend execution of the calling pro­
cess until one of the following occurs:

Semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore
is decremented.

The semid for which the calling process is await­
ing action is removed from the system. When
this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semzcnt associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in s£gnal(2).

Semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops:

Semt"d is nota valid semaphore identifier. [EINVAL]

Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semt"d.
[EFBIG]

Nsops is greater than the system imposed maximum.
[E2BIG]

- 2 -

SEMOP (2) SEMOP (2)

Operation permission is denied to the calling process (see
intro(2)). [EACCES]

The operation would result in suspension of the calling
process but (semJlg & IPC_NO'VAIT) is "true".
[EAGAIN]

The limit on the number of individual processes request­
ing an SEM_UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the cal­
ling process requests a SEM_UNDO would exceed the
limit. [EINV AL]

An operation would cause a semval to overflow the system
imposed limit. [ERANGE]

An operation would cause a semadj value to overflow the
system imposed limit. [ERANGE]

Sops points to an illegal address. [EFAULT]

Upon successful completion, the value of sempid for each sema­
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

RETURN VALUE
If. semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the
call for the last operation in the array pointed to by sops is
returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), semctl(2), semget(2), stdipc(3C).

- 3-

SETPGRP(2) SETPGRP (2)

NAME
setpgrp - set process group 10

SYNOPSIS
int setpgrp ()

DESCRIPTION
Setpgrp sets the process group 10 of the calling process to the pro­
cess 10 of the calling process and returns the new process group 10.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO

BUGS

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2), window(7).

Setpgrp cannot be called from processes associated with windows.
Any process calling setpgrp must have stdin, stdout, and stderr
directed to devices other than window devices to function prop­
erly.

- 1 -

SETUID(2) SETUID (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and effective
user (group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling
process is not equal to uid (gid) and its effective user ID is not
super-user. [EPERM!

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

- 1 -

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, bur)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as
specified by cmd. The following cmds are available:

IPC_STAT Place the current value of each member of
the data structure associated with shmid into
the structure pointed to by buf. The con­
tents of this structure are defined in intro(2).
{READ}

IPC_SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the struc­
ture pointed to by buf:
shm_perm. uid
shm-perm.gid
shm-perm.mode /* only low 9 bits */
This cmd can only be executed by a process
that has an effective user ID equal to either
that of super user or to the value of
shm_perm.uid in the data structure associ­
ated with shmid.

IPC-.RMID Remove the shared memory identifier
specified by shmid from the system and des­
troy the shared memory segment and data
structure associated with it. This cmd can
only be executed by a process that has an
effective user ID equal to either that of super
user or to the value of shm_perm.uid in
the data structure associated with shmid.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier.
IEINVAL\

Cmd is not a valid command. IEINV AL\

Cmd is equal to IPC_STAT and {READ} opera­
tion permission is denied to the calling process
(see intro(2)). IEACCES\

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal

- 1 -

SHMCTL(2)

RETURN VALUE

SHMCTL(2)

to that of super user and it is not equal to the
value of shm_perm.uid in the data structure
associated with shmid. [EPERM]

Bu/points to an illegal address. [EFAULT]

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
shmget(2), shmop(2), stdipc(3C).

- 2 -

SHMGET(2) SHMGET (2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and
shared memory segment of size size bytes (see intro(2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier
associated with it, and (shmflg & IPC_CREAT) is "true)).

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid,
and shm_perm.gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to
the low-order 9 bits of shmflg. Shm_segsz is set equal to
the value of size.

Shm_Ipid, shm_nattch, shm_atime, and shm_dtime
are set equal to o.
Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

Size is less than the system imposed minimum or greater
than the system imposed maximum. [EINV AL]

A shared memorY identifier exists for key but operation
permission (see intro(2)) as specified by the low-order 9
bits of shmflg would not be granted. [EACCES]

A shared memory identifier exists for key but the size of
the segment associated with it is less than size and size is
not equal to zero. [EINV AL]

A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is "false)). [ENOENT]

A shared memory identifier is to be created but the sys­
tem imposed limit on the maximum number of allowed
shared memory identifiers system wide would be exceeded.
[ENOSPC]

A shared memory identifier and associated shared memory
segment are to be created but the amount of available

- 1 -

SHMGET(2) SHMGET(2)

physical memory is not sufficient to fill the request.
[ENOMEMj

A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) & (shmfig & IPC_EXCL)) is "true".
[EEXISTj

RETURN VALVE
Upon successful completion, a non-negative integer, namely a
shared memory identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
shmctl(2), shmop(2), stdipc(3C).

- 2 -

SHMOP (2) SHMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmz'd to the data segment
of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND)
is "true)), the segment is attached at the address given by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND)
is "false", the segment is attached at the address given by
shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONL Y)
is "true" {READ}, otherwise it is attached for reading and writing
{READ /WRITE}.

Shmat will fail and not attach the shared memory segment if one
or more of the following are true:

Shmid is not a valid shared memory identifier. [EINV AL]

Operation permission is denied to the calling process (see
intro(2)). [EACCES]

The available data space is not large enough to accommo­
date the shared memory segment. [ENOMEM]

Shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SUMLBA)) is an illegal address.
[EINVAL]

Shmaddr is not equal to zero, (shmflg & SHM_RND) is
"false", and the value of shmaddr is an illegal address.
[EINVAL]

The number of shared memory segments attached to the
calling process would exceed the system imposed limit.
[EMFILE]

Shmdt detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.

- 1 -

SHMOP (2) SHMOP(2)

Shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment. [EINV ALI

RETURN VALUES
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the
attached shared memory segment.

Shmdt returns a value of o.
Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
exec(2), exit(2), fork(2), shmctI(2), shmget(2), stdipc(SC).

- 2 -

SIGNAL (2) SIGNAL (2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include < sys/ sigoal.h >
int (*sigoal (sig, func»()
iot sig;
iot (*fuoc)();

DESCRIPTION
S£gnal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. S£g
specifies the signal and June specifies the choice.

S£g can be assigned anyone of the following except SIGKILL:

SIGHUP 01 hangup

SIGINT

SIGQUIT

SIGILL

SIGTRAP

SIGIOT

SIGEMT

SIGFPE

SIGKILL

SIGBUS

SIGSEGV

SIGSYS

SIGPIPE

SIGALRM

SIGTERM

SIGUSRI

SIGUSR2

SIGCLD

02 interrupt

03* quit

04 * illegal instruction (not reset when
caught)

05* trace trap (not reset when caught)

06* lOT instruction

07* EMT instruction

08* floating point exception

09 kill (cannot be caught or ignored)

10* bus error

11 * segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read
it

14 alarm clock

15 software termination signal

16

17

18

user defined signal 1

user defined signal 2

death of a child (see WARNING
below)

SIGPWR 19 power fail (see WARNING below)

SIGWIND 20 window status changes

SIGPHONE 21 telephone status changes

See below for the significance of the asterisk (*) III the
above list.

Fune is assigned one of three values: SIG_DFL, SIG_IGN, or a
/unett'on address. The actions prescribed by these values of are as
follows:

- 1 -

SIGNAL (2) SIGNAL(2)

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is
to be terminated with all of the consequences outlined
in exit(2) plus a "core imagen will be made in the
current working directory of the receiving process if
sig is one for which an asterisk appears in the above
list and the following conditions are met:

The effective user ID and the real user ID of
the receiving process are equal.

An ordinary file named core exists and is
writable or can be created. If the file must be
created, it will have the following properties:

SIG_IGN - ignore signal

a mode of 0666 modified by the file
creation mask (see umask(2))

a file owner ID that is the same as
the effective user ID of the receiving
process

a file group ID that is the same as
the effective group ID of the receiv­
ing process

The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal
Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pointed to by June.
The signal number sig will be passed as the only argu­
ment to the signal-catching function. Before entering the
signal-catching function, the value of June for the caught
signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the
receiving process will resume execution at the point it
was interrupted.

When a signal that is to be caught occurs during a read,
a write, an open, or an ioctl system call on a slow device
(like a terminal; but not a file), during a pause system
call, or during a wait system call that does not return
immediately due to the existence of a previously stopped
or zombie process, the signal catching function will be
executed and then the interrupted system call will return
a -1 to the calling process with errno set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

Signal will fail if one or more of the following are true:

- 2 -

SIGNAL (2) SIGNAL(2)

S£g is an illegal signal number, including SIGKILL.
[EINVALJ

Fune points to an illegal address. [EFAULT]

SIGWIND and SIGPHONE are ignored by default and are
reset to SIG.IGN upon an exee(2) system call.

RETURN VALUE
Upon successful completion, s£gnal returns the previous value of
June for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when
caught)

SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of UNIX, these sig­
nals will continue to behave as described below; they are included
only for compatibility with other versions of UNIX. Their use in
new programs is strongly discouraged.

For these signals, June is assigned one of three values: SIG_DFL,
SIG_IGN, or a Junction address. The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD,
the calling process's child processes will not create
zombie processes when they terminate; see exit(2).

Junction address - catch signal
If the signal is SIGPWR, the action to be taken is the
same as that described above for June equal to Junc­
tion address. The same is true if the signal is SIGCLD
except, that while the process is executing the signal­
catching function any received SIGCLD signals will be
queued and the signal-catching function will be con­
tinually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and
ex£t(2)) in the following ways:

wait If the June value of SIGCLD is set to SIG_IGN and a
wa£t is executed, the wait will block until all of the
calling process's child processes terminate; it will then
return a value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the June value
of SIGCLD is set to SIG_IGN, the exiting process will
not create a zombie process.

-3-

SIGNAL(2) SIGNAL (2)

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the proceeding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD
to be caught.

- 4 -

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, bur)
char *path;
struct stat *bur;

int rstat (tildes, bur)
int tildes;
struct stat *bur;

DESCRIPTION
Path points to a path name naming a file. Read, write or execute
permission' of the named file is not required, but all directories
listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, Jstat obtains information about an open file known by
the file descriptor fildes, obtained from a successful open, creat,
dup, Jentl, or pipe system call.

BuJ is a pointer to a stat structure into which information is
placed concerning the file.

The contents of the structure pointed to by buJ include the follow­
ing members:

ino_t
ushort
short
ushort
ushort
dev_t

ofCt
time_t
time_t
time_t

st_ino;
st_mode;
st_nlink;
st_uid;
st~id;
st_rdev;

st_size;
st_atime;
st_mtime;
st_ctime;

/* ID of device containing */
/* a directory entry for this file */
/* Inode number */
/* File mode; see mknod(2) */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group * /
/* ID of device */
/* This entry is define4 only for * /
/* character special or block * /
/ * special files * /
/* File size in bytes * /
/* Time of last ::tccess * /
/* Time of last data modification * /
/* Time of last file status change * /
/ * Times measured in seconds * /
/* since 00:00:00 GMT, */
/* Jan. 1, 1970 */

st_atime Time when file data was last accessed. Changed by
the following system calls: creat(2), mknod(2),
pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the
following system calls: creat(2), mknod(2), pipe (2),
utime(2), and write(2).

- 1 -

STAT(2) STAT(2)

Time when file status was last changed. Changed by
the following system calls: chmod(2), chown(2),
creat(2), link (2), mknod(2), p£pe(2), unl£nk(2),
utime(2), and write(2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory.
IENOTDIR]

The named file does not exist. IENOENT]

Search permission is denied for a component of the path
prefix. [EACCES]

But or path points to an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

But points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), unlink(2).

- 2 -

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

STIME(2)

Stime sets the system's idea of the time and date. Tp points to
the value of time as measured in seconds from 00:00:00 GMT Janu­
ary I, 1970.

Stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

- 1 -

SYNC(2) SYNC (2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to
be written out. This includes modified super blocks, modified i­
nodes, and delayed block I/O.

It should be used by programs which examine a file system, for
example /sck, d/, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon
return from sync.

- 1 -

SYSLOCAL (2) SYSLOCAL (2)

NAME
Syslocal - local system calls

SYNOPSIS
#include <sys/syslocal.h>

int syslocal (cmd [, arg] •••)

DESCRIPTION
Syslocal executes special AT&T UNIX PC system calls. Cmd is the
name of one of the system calls described below.

SYSL-REBOOT Reboots the system. You must be superuser
to execute. No additional arguments are
required.

SYSL.-LED

Returns certain kernel addresses or values.
This call is used by programs like ps (1) so
that they don't have to read the kernel sym­
bol table. The second argument is one of the
following:

SLA_V
SLAYROC

SLA_TIME

SLA_USRSTK
SLA_USIGN

SLA.J3LDDATE

SLA_BLDPWD

SLA~M

SLA.J3DEVCNT

returns address of V
returns address of
table

proc

returns address of system
time
returns top of user stack
returns signature, unique #
for each version
returns address of build
date string
returns address of build
directory string
returns size of physical
memory
returns maximum number
of block devices

SLA_CDEVCNT returns maximum number
of character devices

Turns on/off. user LED. The second argument
is either 0 for off. or 1 for on.

The following two calls support the hardware real-time clock.
Their use requires the additional include file:

#include <sys/rtc.h>

SYSL_RDRTC Reads the real-time clock. The second argu­
ment is a struct rtc * .

SYSL_WRTRTC Writes the real-time clock. The second argu­
ment is a struct rtc * .

The following two calls support loadable device drivers. Their use
requires the additional include file:

#include <sys/drv.h>

- 1 -

SYSLOCAL (2) SYSLOCAL (2)

SYSL_ALLOCDRV Allocates/de allocates space for a loadable
driver and returns driver status. The second
argument is one of the following:

DRV ALLOC allocates space
DRVUNALLOC releases allocated space
DRVSTAT returns driver status

The third argument is a struct drvalloc *
You must be superuser to execute DRVAL­
LOC and DRVUNALLOC.

SYSL_BINDDRV Loads/unloads a loadable driver. The second
argument is either DRVBIND for loading or
DRVUNBIND for unloading. The third argu­
ment is a struct drvbind * . You must be
superuser to execute.

The following two calls support installable fonts.

SYSL_LFONT Installs a font.

Deinstalls a font.

In both cases, two arguments are required: the font file pathname
(dummy pointer for SYSL_UFONT) and the font slot number (0
to 15). Again, you must be superuser to execute. See wZ'ndow(7)
for additional font information.

Supplying a font slot number between 0 and 7 causes the font to
be inherited at that slot number by all subsequent windows. Pre­
loading fonts into slots 8-15 allows these fonts to be installed
without going to the file system so they can be loaded rapidly.
This is useful for applications which refer to more than 8 fonts
because the font activity is more efficient.

If you attempt to load a font into a slot which is currently occu­
pied, you will not get an error condition, but rather, the old font
will be swapped out and the new one loaded in. You can also
deinstall a font from slots 0 through 7, if the font to be de installed
is not being accessed. If it is being accessed ERRNO is set to
EBUSY.

- 2-

TlME(2) TlME(2)

NAME
time - get time

SYNOPSIS
long time ((long *) 0)

long time (tIoc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloe (taken as an integer) is non-zero, the return value is also
stored in the location to which tloe points.

Time will fail if tloe points to an illegal address. [EF AULT]

RETURN VALUE
Upon successful completion, time returns the value of time. Oth­
erwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
stime(2).

- 1 -

TIMES (2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time­
accounting information. The following is this contents of the
structure:

struct

};

tms {
time_t
time_t
time_t
time_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its
terminated child processes for which it has executed a waz"t. All
times are in 60ths of a second on DEC processors, WOths of a
second on WECo processors.

Tms_utime is the CPU time used while executing instructions in
the user space of the calling process.

Tms_stime is the CPU time used by the system on behalf of the
calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutz"mes of
the child processes.

Tms_cstz"me is the sum of the tms_stz"mes and tms_cst£mes of the
child processes.

Times will fail if buffer points to an illegal address. [EF AULT]

RETURN VALUE
Upon successful completion, times returns the elapsed real time,
in 60ths (100ths) of a second, since an arbitrary point in the past
(e.g., system start-up time). This point does not change from one
invocation of times to another. If times fails, a -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

- 1 -

ULIMIT (2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long new limit;

DESCRIPTION
This function provides for control over process limits. The cmd
values available are:

1 Get the process's file size limit. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any
size can be read.

2 Set the process's file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. Ulimit
will fail and the limit will be unchanged if a process with an
effective user ID other than super-user attempts to increase
its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
brk(2), write(2).

- 1 -

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to cmask and
returns the previous value of the mask. Only the low-order 9 bits
of cmask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(l), sh(l), chmod(2), creat(2), mknod(2), open(2).

- 1 -

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted.
Spec is a pointer to a path name. After unmounting the file sys­
tem, the directory upon which the file system was mounted reverts
to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

Spec does not exist. [ENXIO]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINV AL]

A file on spec is busy. !EBUSY]

Spec points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

- 1 -

UNAME(2) UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include < sys/ utsname.h >

int uname (name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current UNIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose
members are:

char
char
char
char
char

sysname[91;
nodename 9];
release [9];
version [9];
machine[9];

Uname returns a null-terminated character string naming the
current UNIX system in the character array sysname. Similarly,
nodename contains the name that the system is known by on a
communications network. Release and version further identify
the operating system. Machine contains a standard name that
identifies the hardware that UNIX is running on.

Uname will fail if name points to an invalid address. [EF AUL T]

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

SEE ALSO
uname(1).

- 1 -

UNLINK(2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name
pointed to be path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path
prefix. [EACCES]

Write permission is denied on the directory containing the
link to be removed. [EACCES]

The named file is a directory and the effective user ID of
the process is not super-user. [EPERM]

The entry to be unlinked is the mount point for a
mounted file system. [EBUSY]

The entry to be unlinked is the last link to a pure pro­
cedure (shared text) file that is being executed.
[ETXTBSY]

The directory entry to be unlinked is part of a read-only
file system. [EROFS]

Path points outside the process)s allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
rm{l), close(2), link(2), open(2).

- 1 -

USTAT(2) USTAT (2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, bur)
int dey;
struct ustat *bur;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a
device number identifying a device containing a mounted file sys­
tem. Buf is a pointer to a ustat structure that includes to follow­
ing elements:

daddr_t Ctfree;
Ctinode;
Cfname[6];
Cfpack[6];

/ * Total free blocks * /
/* Number of free inodes */
/* Filsys name */
/ * Filsys pack name * /

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a
mounted file system. [EINV ALI
Buf points outside the process's allocated address space.
[EFAULTI

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

- 1 -

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbur *times;

DESCRIPTION
Path points to a path name naming a file. Utz"me sets the access
and modification times of the named file.

If Umes is NULL, the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utt"me in this manner.

If t£mes is not NULL, times is interpreted as a pointer to a utz"m­
buf structure and the access and modification times are set to the
values contained in the designated structure. Only the owner of
the file or the super-user may use ut£me this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {

};

time_t actime;
time_t modtime;

1* access time *1
1* modification time *1

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory.
[ENOTDIR]

Search permission is denied by a component of the path
prefix. [EACCES]

The effective user ID is not super-user and not the owner
of the file and Umes is not NULL. [EPERM]

The effective user ID is not super-user and not the owner
of the file and times is NULL and write access is denied.
[EACCES]

The file system containing the file is mounted read-only.
[EROFS]

Times is not NULL and points outside the process's allo­
cated address space. [EFAULT]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

- 1 -

WAIT(2) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

DESCRIPTION
Waa"t suspends the calling process until it receives a signal that is
to be caught (see signal(2)), or until anyone of the calling
process's child processes stops in a trace mode (see ptrace(2)) or
terminates. If a child process stopped or terminated prior to the
call on wait, return is immediate.

If staCloc (taken as an integer) is non-zero, 16 bits of information
called status are stored in the low order 16 bits of the location
pointed to by staCloc. Status can be used to differentiate
between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and
passes useful information to the parent. This is accomplished in
the following manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the pro­
cess to stop and the low order 8 bits will be set equal to
0177.

If the child process terminated due to an exa call, the low
order 8 bits of status will be zero and the high order 8 bits
will contain the low order 8 bits of the argument that the
child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high
order 8 bits of status will be zero and the low order 8 bits
will contain the number of the signal that caused the ter­
mination. In addition, if the low order seventh bit (i.e., bit
200) is set, a "core image" will have been produced; see
signal(2).

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child process
is set to 1. This means the initialization process inherits the child
processes; see intro(2).

Wait will fail and return immediately if one or more of the follow­
ing are true:

The calling process has no existing unwaited-for child
processes. [ECHILD]

StaCloc points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If wait
returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

- 1 -

WAIT(2) WAIT (2)

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signal(2).

- 2 -

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, Jcntl,
or p,'pe system call.

Write attempts to write nbyte bytes from the buffer pointed to by
buJ to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number
of bytes actually written.

On devices incapable of seeking, writing always takes place start­
ing at the current position. The value of a file pointer associated
with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Wrz'te will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildes is not a valid file descriptor open for writing.
[EBADF]

An attempt is made to write to a pipe that is not open for
reading by any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size. See
ulimit(2). [EFBIG]

BuJ points outside the process's allocated address space.
[EFAULT]

If a write requests that more bytes be written than there is room
for (e.g., the ulimit (see ulimit(2)) or the physical end of a
medium), only as many bytes as there is room for will be written.
For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The
next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will
be permitted. Thus, the write will fail if a write of nbyte bytes
would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag
of the file flag word is set, then write to a full pipe (or FIFO) will
return a count of O. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

- 1 -

WRITE(2) WRITE(2)

RETURN VALUE
Upon successful completion the number of bytes actually written
is returned. Otherwise, -1 is returned and errno is set to indicate
the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

- 2-

INTRO(3) INTRO (3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other
than those functions that directly invoke UNIX system primitives,
which are described in Section 2 of this. volume. Oertain major
collections are identified by a letter after the section number:

(30) These functions, together with those of Section 2 and
those marked (3S), constitute the Standard 0 Library
libc, which is automatically loaded by the 0 compiler,
cC(l). The link editor ld(l) searches this library under
the -Ie option. Declarations for some of these functions
may be obtained from #include files indicated on the
appropriate pages.

(3M) These functions constitute the Math Library, libm. They
are automatically loaded as needed by the FORTRAN com­
piler. They are not automatically loaded by the C com­
piler, cc (1); however, the link editor searches this library
under the -1m option. Declarations for these functions
may be obtained from the #include file <math.h>.

(3T) These functions constitute the UNIX PC "terminal access
method" (tam) library.

(3S) These functions constitute the "standard I/O package"
(see stdio(3S)). These functions are in the library libc,
already mentioned. Declarations for these functions may
be obtained from the #include file <stdio.h>.

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the 0 language as '\0'. A character array is a
sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The
null string is a character array containing only the null character.
A NULL pointer is the value that is obtained by casting 0 into a
pointer. The 0 language guarantees that this value will not
match that of any legitimate pointer, so many functions that
return pointers return it to indicate an error. NULL is defined as
o in <stdio.h>; the user can include his own definition if he is
not using < stdio.h >.

/lib/libc.a
/lib/libm.a

- 1 -

INTRO(3) INTRO (3)

SEE ALSO
ar(l), cC(l), Id(1), nm(l), intro(2), stdio(3S).

DIAGNOSTICS
Functions in the Math Library (3M) may return the conventional
values 0 or HUGE (the largest single-precision floating-point
number) when the function is undefined for the given arguments
or when the value is not representable. In these cases, the exter­
nal variable errno (see z'ntro(2)) is set to the value EDOM or
ERANGE. As many of the FORTRAN intrinsic functions use the
routines found in the Math Library, the same conventions apply.

- 2 -

A64L(3C) A64L (3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (8)
char *8;

char *164a (I)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64
ASCII characters. This is a notation by which long integers can be
represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0
through 9 for 2-11, A through Z for 12-37, and a through z for
38-63.

A641 takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to
by 8 contains more than six characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164a
returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the
contents of which are overwritten by each call.

- 1 -

ABORT (3C) ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int a.bort ()

DESCRIPTION
Abort causes an lOT signal to be sent to the process. This usually
results in termination with a core dump.

It is possible for ab ort to return control if SIGIOT is caught or
ignored, in which case the value returned is that of the kill(2) sys­
tem call.

SEE ALSO
adb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory
is writable, a core dump is produced and the message "abort -
core dumped" is written by the shell.

- 1 -

ABS (3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS (3C)

In two!s-complement representation, the absolute value of the
negative integer with largest magnitude is undefined. Some imple­
mentations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

- 1 -

ASSERT (3X) ASSERT (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include < assert.h >
assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When
it is executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message,
xyz is the name of the source file and nnn the source line number
of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1)),
or with the preprocessor control statement "#define NDEBUG"
ahead of the "#inc1ude <assert.h>" statement, will stop asser­
tions from being compiled into the program.

SEE ALSO
cpp(l), abort(3C).

- 1 -

ATOF(3C) ATOF(3C)

NAME
atof - convert ASCII string to floating-point number

SYNOPSIS
double ato! (nptr)
char *nptr;

DESCRIPTION
Atof converts a character string pointed to by nptr to a double­
precision floating-point number. The first unrecognized character
ends the conversion. Atof recognizes an optional string of white­
space characters, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or E fol­
lowed by an optionally signed integer. If the string begins with an
unrecognized character, atof returns the value zero.

DIAGNOSTICS
When the correct value would overflow, atof returns HUGE, and
sets errno to ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S).

- 1 -

BESSEL (3M) BESSEL(3M)

NAME
jO, j I, jn, yO, yI, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double jl (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and jl return Bessel functions of x of the first kind of orders 0
and 1 respectively. In returns the Bessel function of x of the first
kind of order n.

YO and yl return the Bessel functions of x of the second kind of
orders 0 and 1 respectively. Y n returns the Bessel function of x
of the second kind of order n. The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, yl and yn to return the value
HUGE and to set errno to EDOM. They also cause a message
indicating DOMAIN error to be printed on the standard error out­
put; the process will continue.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

- 1 -

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch - binary search

SYNOPSIS
char *bsearch «char *) key, (char *) base, nel, sizeof
(*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in
increasing order according to a provided comparison function.
Key points to the datum to be sought in the table. Base points
to the element at the base of the table. Nel is the number of ele­
ments in the table. Compar is the name of the comparison func­
tion, which is called with two arguments that point to the ele­
ments being compared. The function must return an integer less
than, equal to, or greater than zero according as the first argu­
ment is to be considered less than, equal to, or greater than the
second.

DIAGNOSTICS

NOTES

A NULL pointer is returned if the key cannot be found in the
table.

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
Isearch(3C), hsearch(3C), qsort(3C), tsearch(3C).

- 1 -

CLOCK(3C) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of the
user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or system(3S).

The resolution of the clock is 16.667 milliseconds.

SEE ALSO

BUGS

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds for compa­
tibility with systems that have CPU clocks with much higher reso­
lution. Because of this, the value returned will wrap around after
accumulating only 2147 seconds of CPU time (about 36 minutes).

- 1 -

CONV(3C) CONV(3C)

NAME
toupper, tolower, _tou.pper, _tolower, toascii - translate charac­
ters

SYNOPSIS
#include < ctype.h >
int toupper (c)
int c;

int tolower (c)
int c;

tnt _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the
integers from -1 through 255. If the argument of toupper
represents a lower-case letter, the result is the corresponding
upper-case letter. If the argument of tolower represents an
upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing
as toupper and tolower but have restricted domains and are fas­
ter .. _toupper requires a lower-case letter as its argument; its
result is the corresponding upper-case letter. _tolower requires an
upper-case letter as its argument; its result is the corresponding
lower-case letter. Arguments outside the domain cause undefined
results.

Toasci£ yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for compatibility
with other systems.

SEE ALSO
ctype(3C), getc(3S).

- 1 -

CRYPT(3C) (Domestic Version Only) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key , salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION
This function is available only in the domestic (U.S.) version of
the UNIX PC software.

Crypt is the password encryption function. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-z A-Z 0-9 • 11; this string is used to per­
turb the DES algorithm in one of 4096 different ways, after which
the password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password.
The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access
to the actual DES algorithm. The argument of setkey is a charac­
ter array of length 64 containing only the characters with numeri­
cal value 0 and 1. If this string is divided into groups of 8, the
low-order bit in each group is ignored; this gives a 56-bit key
which is set into the machine. This is the key that will be used
with the above mentioned algorithm to encrypt or decrypt the
string block with the function encrypt.

The argument to the encrypt entry is a character array of length
64 containing only the characters with numerical value 0 and 1.
The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected
to the DES algorithm using the key set by setkey. If edfiag IS

zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

login(1M), passwd(l), getpass(3C), passwd(4).

The return value points to static data that are overwritten by
each call.

- 1 -

CTERMID (3S) CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(s)
char *s;

DESCRIPTION

NOTES

Cterm£d generates the path name of the controlling terminal for
the current process, and stores it in a string.

If 8 is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, 8 is
assumed to point to a character array of at least L_ctermid ele­
ments; the path name is placed in this array and the value of 8 is
returned. The constant L_ctermid is defined in the <stdio.h>
header file.

The difference between ctermid and ttyname(3C) is that ttyname
must be handed a file descriptor and returns the actual name of
the terminal associated with that file descriptor, while cterm£d
returns a string U dey /tty) that will refer to the terminal if used
as a file name. Thus ttyname is useful only if the process already
has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

- 1 -

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time
to string

SYNOPSIS
#include < time.h >
char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing
the time in seconds since 00:00:00 GMT, January 1, 1970, and
returns a pointer to a 26-character string in the following form.
All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Localtime and gmtime return pointers to "tm" structures,
described below. Localtime corrects for the time zone and possi­
ble Daylight Savings Time; gmtime converts directly to
Greenwich Mean Time (GMT), which is the time the UNIX system
uses.

Asctime converts a "tm" structure to a 26-character string, as
shown in the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm II
structure, are in the <time.h> header file. The structure
declaration is:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm-ffiday;
int tm_mon;
int tmJear;
int tm_wday;
int tmJday;
int tm_isdst;

/* seconds (0 - 59) * /
/* minutes (0 - 59) * /
/* hours (0 - 23) * /
/* day of month (1 - 31) */
/* month of year (0 - 11) * /
/* year - 1900 */
/* day of week (Sunday = 0) * /
/* day of year (0 - 365) */

Tm_isdst is non-zero if Daylight Savings Time is in effect.

- 1 -

CTIME(3C) CTlME(3C)

The external long variable t2'mezone contains the difference, in
seconds, between GMT and local standard time (in EST, t£mezone
is 5*60*60); the external variable dayUght is non-zero if and only
if the standard U.S.A. Daylight Savings Time conversion should
be applied. The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for these years
can be extended.

If an environment variable named TZ is present, asctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time and
Greenwich Mean Time in hours, followed by an optional three­
letter name for a daylight time zone. For example, the setting for
New Jersey would be EST5EDT. The effects of setting TZ are
thus to change the values of the external variables timezone and
daylight; in addition, the time zone names contained in the exter­
nal variable

ehar *tzname[2] = { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets
these external variables from TZ; tzset is called by asctime and
may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user
logs on, to a value in the local fete/profile file (see profile (4)).

SEE ALSO

BUGS

time(2), getenv(3C), profile(4), environ(5).

The return values point to static data whose content is overwrit­
ten by each call.

- 2 -

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include < ctype.h >
int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. Isascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF
(-1 - see stdio (38)).

isalpha

isupper

islower

is digit

isxdigit

isalnum

isspace

ispunct

isprz"nt

isgraph

iscntrl

isascii

DIAGNOSTICS

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9]' [A-F] or [a-fl.

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, verti­
cal tab, or form-feed.

c is a punctuation character (neither control nor
alphanumeric).

c is a printing character, code 040 (space)
through 0176 (tilde).

c is a printing character, like isprint except false
for space.

c is a delete character (0177) or an ordinary con­
trol character (less than 040).

c is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the
function, the result is undefined.

SEE ALSO
ascii(S).

- 1 -

CURSES (3) CURSES (3)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags 1 files -lcurses -ltermcap [libraries 1

DESCRIPTION
These routines give the user a method of updating screens with
reasonable optimization. They keep an image of the current
screen, and the user sets up an image of a new one. Then the
refresh(} tells the routines to make the current screen look like the
new one. In order to initialize the routines, the routine int"tscr()
must be called before any of the other routines that deal with win­
dows and screens are used. The routine endwin() should be called
before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimz'zation: A Library
Package, Ken Arnold,
termio(7) termcap(5)

FUNCTIONS
addch(ch)
addstr(str)
box(win,vert,hor)
crmodeO
clearO
clearok(scr, boolf)
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
getchO
getcap(name)
getstr(str)
gettmodeO
getyx(win,y,x)
inchO

initscrO
insch(c)
insertlnO
leaveok(win,boolf)
longname(termb uf,name)
move(y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin(lines,cols,begin"'y,begin_x)
nlO
nocrmodeO
noechoO
nonlO

- 1 -

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x)
coordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping

CURSES (3)

norawO
overlay(winI,win2)
overwrite(win 1, win2)
printw(fmt,argI,arg2, ...)
rawO
refresh 0

resettyO
savettyO
scanw(fmt,argI,arg2, ...)
scroll(win)
scrollok(win, boo If)
setterm(name)
standendO
standoqtO
subwin(win,lines,cols,beginJ,begin])
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeoI(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win ,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win,y,x)

wprint w(win ,fmt,argI,arg2, ...)
wrefresh(win)
wscanw(win,fmt,argi ,arg2, ...)
wstandend(win)
wstandout(win)

- 2 -

CURSES (3)

unset raw mode
overlay wini on win2
overwrite wini on top of win2
printf on stdscr
set raw mode
make current screen look like
stdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
change all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) co-ordinates
on win
printf on win
make screen look like win
scanf through win
end standou~ mode on win
start standout mode on win

CUSERID (3S) CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
Cuser£d generates a character-string representation of the login
name of the owner of the current process. If 8 is a NULL pointer,
this representation is generated in an internal static area, the
address of which is returned. Otherwise, 8 is assumed to point to
an array of at least L_cuserid characters; the representation is
left in this array. The constant L_cuserid is defined in the
<stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuser£d returns a NULL
pointer; if 8 is not a NULL pointer, a null character (\0) will be
placed at 8(0].

SEE ALSO
getlogin(3C), getpwent(3C).

- 1 -

DIAL(3C) DIAL (3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined in
the < dial.h > header file.

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set during
the allocation of the terminal device.

The CALL typedef in the <dial.h> header file is:

typedef struct {
struct termio *attr; 1* pointer to termio * /

int
int

char

char

int

} CALL;

baud;
speed;

*line;

*telno;

modem;

1* attribute struct * /
1* transmission data rate * /
/* 212A modem: low=300, * /
1* high= 1200 * /
/* device name for * /
/* out-going line * /
1* pointer to tel-no * /
/ * digi ts string * /
1* specify modem control * /
/* for direct lines * /

The CALL element speed is intended only for use with an outgoing
dialed call, in which case its value should be either 300 or 1200 to
identify the 113A modem, or the high or low speed setting on the
212A modem. The CALL element baud is for the desired transmis­
sion baud rate. For example, one might set baud to 110 and
speed to 300 (or 1200).

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element
need not be specified as it will be determined from the L-devices
file.

The telno element is for a pointer to a character string represent­
ing the telephone number to be dialed. Such numbers may consist
only of symbols described in phone(7). The termination symbol
will be supplied by the dial function, and should not be included
in the telno string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control is

- I -

DIAL(3C) DIAL (3C)

FILES

required. The CALL element attr is a pointer to a term£o struc­
ture, as defined in the <termio.h> header file. A NULL value
for this pointer element may be passed to the dial function, but if
such a structure is included, the elements specified in it will be set
for the outgoing terminal line before the connection is established.
This is often important for certain attributes such as parity and
baud-rate.

/usr /lib/uucp/L-devices
/usr /spool/uucp /LCK.. tty-dev£ce

SEE ALSO
uucp(1C), alarm(2), read(2), write(2).
phone(7), termio(7) in the UNIX Administrator's Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure
will be returned. Mnemonics for these negative indices as listed
here are defined in the < d ial.h > header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A
NO_BD_K

-1 /* interrupt occurred * /
-2 /* dialer hung (no return from write) * /
-3 /* no answer within 10 seconds * /
-4 /* illegal baud-rate * /
-5 /* acu problem (openO failure) * /
-6 1* line problem (openO failure) * /
-7 1* can't open LDEVS file * /
-8 /* requested device not available * /
-9 /* requested device not known * /
-10 /* no device available at requested baud * /
-11 /* no device known at requested baud * /

WARNINGS

BUGS

Including the < dial.h > header file automatically includes the
<termio.h> header file.

The above routine uses < stdio.h >, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

An alarm(2) system call for 3600 seconds is made (and caught)
within the dial module for the purpose of "touching" the LCK ..
file and constitutes the device allocation semaphore for the termi­
nal device. Otherwise, uucp(IC) may simply delete the LCK..
entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to
be around for an hour or more, error returns from reads should be
checked for (errno==EINTR), and the read possibly reissued.

- 2 -

DRAND48 (3C) DRAND48 (3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,
seed48, Icong48 - generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsu bi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functiops drand48 and erand48 return non-negative double­
precision floating-point values uniformly distributed over the
interval [0.0, 1.0).
Functions Irand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uni­
formly distributed over the interval [_23\ 231).

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 ~s called. (Although it is not recommended
practice, constant default initializer values will be supplied
automatically if drand48, lrand48 or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point
to be called first.

All the routines work by generating a sequence of 48-bit integer
values, X; , according to the linear congruential formula

X,,+1 = (aX" + C)mod m n ~O.
The parameter m = 248

; hence 48-bit integer arithmetic is per­
formed. Unless Icong48 has been invoked, the multiplier value a
and the addend valuec are given by

- 1 -

DRAND48 (30) DRAND48 (30)

NOTES

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8 ,

The value returned by any of the functions drand48, erand48,
Irand48, nrand48, mrand48 or jrand48 is computed by first gen­
erating the next 48-bit X; in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned,
are copied from the high-order (leftmost) bits of Xi and
transformed into the returned value.

The functions drand48, Irand48 and mrand48 store the last 48-bit
X; generated in an internal buffer; that is why they must be ini­
tialized prior to being invoked. The functions erand48, nrand48
and jrand48 require the calling program to provide storage for the
successive Xi values in the array specified as an argument when
the functions are invoked. That is why these routines do not have
to be initialized; the calling program merely has to place the
desired initial value of Xi into the array and pass it as an argu­
ment. By using different arguments, functions erand48, nrand48
and jrand48 allow separate modules of a large program to gen­
erate several independent streams of pseudo-random numbers, i.e.,
the sequence of numbers in each stream will not depend upon how
many times the routines have been called to generate numbers for
the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi
to the 32 bits contained in its argument. The low-order 16 bits of
Xi are set to the arbitrary value 330E16 .

The initializer function seed48 sets the value of Xi to the 48-bit
value specified in the argument array. In addition, the previous
value of X; is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by
seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point
at some future time - use the pointer to get at and store the last
X; value, and then use this value to reinitialize via seed48 when
the program is restarted.

The initialization function Icong48 allows the user to specify the
initial X; , the multiplier value a , and the addend value c. Argu­
ment array elements param!O-2! specify X;, param!3-5! specify
the multiplier a, and param!6! specifies the 16-bit addend c.
After Icong48 has been called, a subsequent call to either srand48
or seed48 will restore the "standard" multiplier and addend
values, a and c , specified on the previous page.

The versions of these routines for the VAX-ll and PDP-ll are
coded in assembly language for maximum speed. It requires
approximately 80 psec on a VAX-ll/780 and 130 psec on a PDP-
11/70 to generate one pseudo-random number. On other comput­
ers, the routines are coded in portable C. The source code for the
portable version can even be used on computers which do not

- 2 -

DRAND48 (30) DRAND48 (30)

have floating-point arithmetic. In such a situation, functions
drand48 and erand48 do not exist; instead, they are replaced by
the two new functions below.

long ira.nd48 (m)
unsigned short m;

long kra.nd48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers
uniformly distributed over the interval [0, m -1].

SEE ALSO
rand(3C).

- 3-

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, bur)
double value;
char *buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigz"t digits
and returns a pointer thereto. The low-order digit is rounded.
The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the
left of the returned digits). The decimal point is not included in
the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been
rounded for FORTRAN F-format output of the number of digits
specified by ndigit.

Gcvt converts the value to a null-terminated string in the array
pointed to by but and returns buf. It attempts to produce nd£gz"t
significant digits in FORTRAN F-format if possible, otherwise E­
format, ready for printing. A minus sign, if there is one, or a
decimal point will be included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The return values point to static data whose content is overwrit­
ten by each call.

- 1 -

END(3C) END (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break may
be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (-p) option of cc(1), and so
on. Thus, the current value of the program break should be
determined by shrk(O) (see brk(2)).

SEE ALSO
brk(2), malloc(3C), stdio(3S).

- 1 -

EPRINTF (3T) (AT&T UNIX PC only) EPRINTF (3T)

NAME
eprintf - send a message to the status manager

SYNOPSIS
#include < status.h >
int eprintf (mtype, mact, uname, format [, arg] 000)

int mtype, mact;
char *uname, *format;

DESCRIPTION
Eprint! formats the passed message a la print! and writes the mes­
sage to the error device. The status manager wakes up whenever
the error device is written to, queues the message, and displays an
icon to indicate a message is waiting.

Mtype (message type) can have one of the following values:

ST_MAIL Mail messages
ST_CAL Calendar messages
ST_OTHER Miscellaneous messages
ST_SYS Kernel error messages
ST_LOG Log message in log file
ST _POP Popup message

Mact (message action) can have one of the following values:

ST_DISPLA Y Just display message

ST_EXEC Execute process (message text is shell
command line in this case)

ST _NOTIFY Notify caller on display (sends caller
SIGUSR1)

ST_CONFIRM Signal caller with confirmation/denial
on display (SIGUSR1 = Yes, SIGUSR2
= No)

ST_OFF Remove messages from queue

ST~OGFILE Log message in log file

Uname points to the user login name that the message is for. The
status manager will only display the message pending icon when
this user is logged in. If uname is NULL (or if it points to a null
string), then the message is displayed regardless of who is logged
in.

ST_POP will cause the message to be acted on immediately,
rather than displaying an icon and waiting for the user to click.
ST_LOG will take the first word of the formatted message (i.e.,
up to the first space) as a file name, which it will open as a logfile
in / usr / adm. The rest of the message will then be inserted in
the file, followed by a time stamp.

DIAGNOSTICS
Eprint! returns -1 if error (open of error device failed).

SEE ALSO
message (3T), tam(3T).

- 1 -

ERF(3M) ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include < math.h >
double err (x)
double x;

double errc (x)
double x;

DESCRIPTION
z

Erl returns the error function of x, defined as ~ f e _t
2
dt.

y'lr 0

ErIc, which returns 1.0 - erl(x) , is provided because of the
extreme loss of relative accuracy if erl(x) is called for large x and
the result subtracted from 1.0 (e.g. for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

- 1 -

EXP (3M) EXP(3M)

NAME
exp, log, log 10, pow, sqrt - exponential, logarithm, power, square
root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eX.

Log returns the natural logarithm of x. The value of x must be
positive.

Log 10 returns the logarithm base ten of x. The value of x must
be positive.

Pow returns xY • The values of x and y may not both be zero. If
x is non-positive, y must be an integer.

Sqrt returns the square root of x. The value of x may not be
negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, and
sets errno to ERANGE.

Log and log10 return 0 and set errno to EDOM when x is non­
positive. An error message is printed on the standard error out­
put.

Pow returns 0 and sets errno to EDOM when x is non-positive
and y is not an integer, or when x and yare both zero. In these
cases a message indicating DOMAIN error is printed on the stan­
dard error output. When the correct value for pow would
overflow, pow returns HUGE and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

- 1 -

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fHush (stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be writ­
ten out, and the stream to be closed.

F close is performed automatically for all open files upon calling
exit(2).

Fftush causes any buffered data for the named stream to be writ­
ten to that file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such
as trying to write to a file that has not been opened for writing)
was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

- 1 -

FERROR(3S) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int reor (stream)
FILE
*stream;

int ferror (stream)
FILE
*stream;

void clearerr (stream)
FILE
*streain;

int fileno(stream)
FILE
*stream;

DESCRIPTION

NOTE

Feo! returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

Ferror returns non-zero when an I/O error has previously
occurred reading from or writing to the named stream, otherwise
zero.

Clearerr resets the error indicator and EOF indicator to zero on
the named stream.

Fileno returns the integer file descriptor associated with the
named stream; see open(2).

All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open(2), fopen(3S).

- 1 -

FLOOR(3M) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value
functions

SYNOPSIS
#include < math.h >
double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number)
not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero, otherwise the number f with the
same sign as x, such that x = ,.y + f for some integer i, and 1 f 1

< 1 y I·
Fabs returns 1 xl·

SEE ALSO
abs(3C).

- 1 -

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream
with it. Fopen returns a pointer to the FILE structure associated
with the stream.

File-name points to a character string that contains the name of
the file to be opened.

Type is a character string having one of the following values:

"r"

"w"
"a"

"r+"

"w+"

"a+"

open for reading

truncate or create for writing

append; open for writing at end of file, or
create for writing

open for update (reading and writing)

truncate or create for update

append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the open ulti­
mately succeeds. Freopen returns a pointer to the FILE structure
associated with stream.

Freopen is typically used to attach the preopened streams associ­
ated with stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor obtained from
open, dup, creat, or pipe(2), which will open files but not return
pointers to a FILE structure stream which are necessary input for
many of the section 35 library routines. The type of stream must
agree with the mode of the open file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an
intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"),
it is impossible to overwrite information already in the file. Fseek

- 1 -

FOPEN(3S) FOPEN(3S)

may be used to reposition the file pointer to any position in the
file, but when output is written to the file the current file pointer
is disregarded. All output is written at the end of the file and
causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each pro­
cess may write freely to the file without fear of destroying output
being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

SEE ALSO
open(2), fclose(3S).

DIAGNOSTICS
Fopen and jreopen return a NULL pointer on failure.

- 2 -

FORM(3T) (AT&T UNIX PC only) FORM(3T}

NAME
form - display and accept forms

SYNOPSIS
#include <menu.h>
#include < form.h >
int form(form, op)
form_t ·form;
int op;

DESCRIPTION
This routine manipulates a form as determined by the operation
code (op). If the op arg is F _BEGIN, the form is initialized and
displayed. If op is F _INPUT, user input is accepted. If op is
F -END, the form is terminated and removed from the display.
These functions may be combined in many ways. By specifying
(F _BEGIN IF_INPUT IF_END), the caller creates a "pop-up"
form which is initialized (displayed), used for input, then removed.
Generally, (F .-BEGIN IF_INPUT) is used for the first call,
F _INPUT for each subsequent interaction, and F _END when the
form is to be discarded.

During the F _INPUT function, the user may point to fields with
the mouse or with the keyboard (arrows, Prev, Next, Beg, Home,
End, Tab). The user may may modify fields by typing and edit­
ing (Back Space, Dlete Char, Clear Line, Cancel) or by selecting a
choice from a menu optionally associated with the field.

The form structure has the following form:

typedef struct
{

} form_t;

char
char
char
int
track_t
field_t
field_t

*Clabel;
*Cname;
Cflags;
Cwin;
*Ctrack;
*Cfields;
*Ccurfl;

/* form label */
/* form name */
/ * form flags * /
/* form window */
/* tracking info */
/* fields */
/* current field */

F _label is the form label, displayed on the window label line of
the form. If f_label is NULL, no label is displayed.

F _name is the form name, or NULL if the form has no name.

F -flags contains flags. The F _ WINNEW flag causes form to use
the "new" algorithm to place the window. Basically, the new algo­
rithm looks for relatively empty screen space to place the window.
F _WINSON causes form to use the "son" algorithm which causes
the new window to slightly overlap the current window. If neither
F _ WINNEW nor F _WINSON is given, the "popup Jl algorithm is
used. This causes the new window to appear near the middle of
the current window, inside it if possible. F _NOMOVE is set if the

- 1 -

FORM(3T) (AT&T UNIX PC only) FORM(3T)

Move icon is not to be displayed on the border of the form.
F _NO HELP is set if the Help icon is not to be displayed on the
form border.

F _win holds the window identifier associated with this form. It is
allocated on an F _BEGIN call, used on subsequent calls, and
deleted on an F _END call. F _track is a pointer to the mouse­
tracking information required during form interaction. The space
for this data is allocated on F _BEGIN and freed on F _END.

F -fields points to the array of fields (see below). F _curfl points to
the current field. The caller should point f_curfl to the default
field. Form will modify f_curfl as the user moves the highlighting
around in the form. The list of fields is terminated by a field
whose fl_name is NULL.

Each field in the array pointed to by f-fields and f_curcl has the
following form:

typedef struct
{

} fie I d_t;

char
char
char
char
char
char
char
menu_t
char

*fl_name;
fl_row;
fl_ncol;
fl_fcol;
fl_Ien;
fl_flags;
*fl_value;
*fl_menu;
*fl_prompt;

/* field name * /
/* field row * /
/* name column * /
/* field column * /
/* field length * /
/* flags * /
/* field values * /
/* assoc. menu pointer * /
/* field prompt * /

FCname is the field name. FCrow is the row number on which to
display the field. Row (and column) numbers are form-relative
with 0,0 being the upper-leftmost location in the form. The form
name (I_name) is located above 0,0 so the user needn't allocate a
row for it.

FCncol and flJcol control where the field name (fl_ncol) and
field value (flJcol) are displayed. Generally, flJcol is greater
than fl_ncol by at least the length of the field name.

FClen is the length of the field. See fl_value, below.

FCflags contains various flags which describe the field.
F _CLEARIT specifies that any previous value for the field should
be erased when the user tries to enter a new value. This is useful
for fields where user editing makes little sense. F _MONL Y means
that the only allowable input to this field is via the associated
menu (see fLmenu, below).

On call, fl_value contains the initial field value. On return, this
string is modified to contain the user-supplied value. If no editing
was performed by the user, the return value is the same as the call
value. Note that the caller must supply a pointer to a character
array at least fl_len + 1 bytes long. In addition, the caller should
place a null byte after the end of the default value. For a 30 byte

- 2-

FORM(3T) (AT&T UNIX PC only) FORM(3T)

field, a default value might be of the form:

"Default Value\O "
123456789012345678901234567890

1 2 3

FLmenu points to an optional "associated menu. lJ If the caller
supplies a menu pointer, then the user may press the Cmd or Opts
key on that field to invoke menu(3T) to parse the menu. The
selected menu item's name (mi_name) is placed in the field's value
(JCvalue). If the F _MONL Y flag is set for the field, then any
attempt to edit the field's value will force the associated menu to
pop-up. When a field has an associated menu, the SLECT and
MARK keys step through the menu choices without displaying the
menu.

The optional message pointed to by fCprompt is displayed on the
prompt line whenever the field is selected. .AB the user moves
from field to field, the prompt changes.

EXAMPLE
The following program illustrates a typical use of form:

#include <tam.h>
#include <menu.h>
#include <form.h>
#include <stdio.h>
#include <kcodes.h>

mitem_t printitems[1 =
{

"ASR-33", 0,0,
"Centronix", 0,1,
"Diablo #1", 0,2,
"Diablo #2", 0,3,
"Epson in lab", 0,4,
"Laser Printer", 0,5,
"File", 0,6,
0, 0,0

};

menu_t printmenu =
{

};

"Printers",
0,
"Select a Printer from the list",
0,1,0,0,
M_SINGLE,
{O},
0,0,0,0,0,
printitems,
printitems,
o

mitem_t priitems[1 =

- 3-

FORM(3T) (AT&T UNIX PC only) FORM(3T)

{
"Low", 0,0
"Normal", 0,1,
"High", 0,2,
"Immediate", 0,3,
0,0,0,

};

menu_t primenu =
{

};

"Printing Priority",
0,
"At what priority should the document be printed?",
0,1,0,0,
M_SINGLE,
{O},
0,0,0,0,0,
priitems,
&priitems[lJ,
o

mitem_t yesnoitems[1 =
{

};

"No", 0,0,
"Yes", 0,1,
0,0,0

menu_t yesnomenu =
{

};

0,
0, "Select Yes (y) or No (n)",
0,1,0,0,
M_SINGLE,
{O},
0,0,0,0,0,
yesnoitems,
yesnoitems,
o

field_t printfields [1 =
{

"Printer Name", 0,0, 15,30,F _CLEARIT,
"System Printer ",&printmenu,
"Enter a Printer Name (touch CMD or OPTS to see
choices)",
"From Page", 1,0,15,5,0,
"1 ",0,
"Select the page number of the first page to be printed",

- 4-

FORM(3T)

};

(AT&T UNIX PC only) FORM(3T)

"To Page", 1,25,40,5,0,
"999 ",0,
"Select the page number of the last page to be printed",

"Priority", 2,0, 15, lO,F_MONLY,
" Norm al ",&primenu,
"Enter the print priority (Press CMD or OPTS to see
choices)",

"Delete After Printing?", 4,0,25,3,0,
"No ", &yesnomenu,
"Do you wish the document to be deleted after it is
printed?",

0,
0,0,

°
0,0,0,0,0,

form_t printform =
{

};

mainO
{

"Print",
"Printer Options",
0,
0,
0,
printfields,
printfields

int err;
int printop;
char *which;

winit();
keypad(O,1);

printop = M_BEGIN 1M_INPUT;

while(1)
{

}

which = "printform";
err = form(&printform, printop);
printop &= -M_BEGIN;
if (err < 0 II err == Close)
break;

- 5 -

FORM(3T) (AT&T UNIX PC only) FORM(3T)

Fll..ES

}

if (err < 0)
{

}
wexit(O);

fprintf(stderr, "fatal err in %s, code
%d" ,which,err);
sleep(5);

/usr /include/form.h
/usr /include/menu.h
/usr /include/kcodes.h

SEE ALSO
menu(3T), tam(3T).

DIAGNOSTICS
Form returns non-negative keybo~rd codes (see kcodes.h) when
keyboard input terminated the form inter::j.ction. Other return
values signal more serious errors and are' defined in form.h.

- 6-

FREAD(3S) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int rwrite (ptr, size, nitems, stream)
char *ptr;
in t size, n items;
FILE *stream;

DESCRIPTION
Fread copies, into an array beginning at ptr, nitems items of data
from the named input stream, where an item of data is a sequence
of bytes (not necessarily terminated by a null byte) of length size.
Fread stops appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been
read. Fread leaves the file pointer in stream, if defined, pointing
to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the the array
pointed to by ptr to the named output stream. Fwrite stops
appending when it has appended nt"tems items of data or if an
error condition is encountered on stream. Fwrite does not change
the contents of the array pointed to by ptr.

The variable size is typically sizeo!(*ptr) where the pseudo­
function sizeo! specifies the length of an item pointed to by ptr.
If ptr points to a data type other than char it should be cast into
a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If
nitems is non-positive, no characters are read or written and 0 is
returned by both fread and fwrite.

- 1 -

FREXP(3C) FREXP (3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2", where
the "mantissa" (fraction) x is in the range 0.5 ~ I x I < 1.0, and
the "exponent" n is an integer. Frexp returns the mantissa of a
double value, and stores the exponent indirectly in the location
pointed to by eptr.

Ldexp returns the quantity value * 2e
:rP.

ModI returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, HUGE is returned and errno is set
toERANGE.

- 1 -

FSEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset
bytes from the beginning, from the current position, or from the
end of the file, according as ptrname has the value 0, 1, or 2.

Rewind(stream) is eq~ivalent to fseek(stream, OL, 0), except that
no value is returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for
~pdate may be either input or output.

Ftell returns the offset of the current byte relative to the begin­
ning of the file associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that
has not been opened via fopen; in particular, fseek may not be
used on a terminal, or on a file opened via popen(3S).

WARNING
Although in UNIX an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset,
portability to non-UNIX systems requires that an offset be used
by fseek directly. Arithmetic may not meaningfully be performed
on such a offset, which is not necessarily measured in bytes.

- 1 -

FTW(3C) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a pointer
to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing infor­
mation about the object, and an integer. Possible values of the
integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot be
read, and FTW _NS for an object for which stat could not success­
fully be executed. If the integer is FTW _DNR, descendants of that
directory will not be processed. If the integer is FTW _NS, the stat
structure will contain garbage. An example of an object that
would cause FTW _NS to be passed to fn would be a file in a direc­
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca­
tion of fn returns a nonzero value, or some error is detected
within ftw (such as an I/O error). If the tree is exhausted, ftw
returns zero. If fn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by fn. If ftw
detects an error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. Depth must
not be greater than the number of file descriptors currently avail­
able for use. Ftw will run more quickly if depth is at least as
large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.
I t could be made to run faster and use less storage on deep struc­
tures at the cost of considerable complexity.
Ftw uses malloc(3C) to allocate dynamic storage during its opera­
tion. If ftw is forcibly terminated, such as by longjmp being exe­
cuted by fn or an interrupt routine, ftw will not have a chance to
free that storage, so it will remain permanently allocated. A safe
way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its
next invocation.

- 1 -

GAMMA (3M) GAMMA (3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

extern in t signgam;

double gamma (x)
double x;

DESCRIPTION
Gamma returns In(I r(x) I), where r(x) is defined as
00

f e -t t:t -1 dt. The sign of r(x) is returned in the external
a
integer st'gngam. The argument x may not be a non-negative
integer.

The following C program fragment might be used to calculate r:
if ((y = gamma(x)) > LOGHUGE)

error();
y = signgam * exp(y);

where LOGHUGE is the least value that causes exp(3M) to return a
range error.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno
is set to EDOM. A message indicating DOMAIN error is printed on
the standard error output.

If the correct value would overflow, gamma returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
exp(3M), matherr(3M).

- 1 -

GETC (3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include < stdio.h >
int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next character (i.e. byte) from the named input
stream. It also moves the file pointer, if defined, ahead one char­
acter in stream. Getc is a macro and so cannot be used if a func­
tion is necessary; for example one cannot have a function pointer
point to it.

Getchar returns the next character from the standard input
stream, stdin. As in the case of getc, getchar is a macro.

Fgetc performs the same function as getc, but is a genuine func­
tion. Fgetc runs more slowly than getc, but takes less space per
invocation.

Getw returns the next word (i.e. integer) from the named input
stream. The size of a word varies from machine to machine. It
returns the constant EOF upon end-of-file or error, but as that is
a valid integer value, feof and ferror(3S) should be used to check
the success of getw. Getw increments the associated file pointer,
if defined, to point to the next word. Getw assumes no special
alignment in the file.

SEE ALSO
fclose(3S), ferror{3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end-of-file or
upon an error.

Because it is implemented as a macro, getc treats incorrectly a
stream argument with side effects. In particular, getc(*f++)
doesn't work sensibly. Fgetc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

- 1 -

GETCWD(3C) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (bur, size)
char *bur;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name.
The value of size must be at least two greater than the length of
the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space
using malloc(3C). In this case, the pointer returned by getcwd
may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the out­
put of the pWd(l) command into the specified string space.

EXAMPLE

SEE ALSO

char *cwd, *getcwdO;

if ((cwd = getcwd((char *)NULL, 64)) == NULL) {
perror("pwd ");
exit(l);

}
printf("%s\n", cwd);

pwd(1), malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an
error occurs in a lower-level function.

- 1 -

GETENV(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see env£ron(S)) for a string
of the form name=value, and returns a pointer to the value in
the current environment if such a string is present, otherwise a
NULL pointer.

SEE ALSO
environ(S).

- 1 -

GETGRENT (3C) GETGRENT (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file
entry

SYNOPSIS
#include <grp.h>

struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()

void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an
object with the following structure containing the broken-out
fields of a line in the /etc/group file. Each line contains a
"group" structure, defined in the <grp.h> header file.

struct group {

};

char *gr_name;
char *gr_passwd;

int
char

gr~id;
**gr_mem;

1* the name of the group * /
1* the encrypted group * /
1* password */
1* the numerical group ID * /
1* vector of pointers to * /
1* member names * /

Getgrent when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used to
search the entire file. Getgrgid searches from the beginning of the
file until a numerical group ID matching g£d is found and returns a
pointer to the particular structure in which it was found. Get­
grnam searches from the beginning of the file until a group name
matching name is found and returns a pointer to the particular
structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. Endgrent may be called to close the
group file when processing is complete.

/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

- 1 -

GETGRENT (3C) GETGRENT (3C)

WARNING

BUGS

The above routines use <stdio.h>, which causes them to
increase the size of programs, not otherwise using standard I/0,
more than might be expected.

All information is contained in a static area, so it must be copied
if it is to be saved.

- 2-

GETLOGIN (3C) GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
cha.r *getlogin ();

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in
jetcjutmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ill is
shared by several login names.

If getlogin is called within a process that is not attached to a ter­
minal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid, or to call getlog£n
and if it fails to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

BUGS

Returns the NULL pointer if name not found.

The return values point to static data whose content is overwrit­
ten by each call.

- 1 -

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (ai-gc, argv, optstring)
int argc;
char **argv;
char *optstriilg;

extern char *optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter
in optstring. Optstring is a strIng of recognized option letters; if a
letter is followed by a colon, the option is expected to have an
argument that mayor may not be separated from it by white
space. Optarg is set to point to the start of the option argument
on return from getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non­
option argument), getopt returns EOF. The special option -­
may be used to delimit the end of the options; EOF will be
returned, and -- will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question
mark (?) when it encounters an option letter not included in opt­
string.

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and h, and the options r and 0, both of which requite
arguments:

main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

while ((c = getopt (argc, argv, "abf:o:")) != EOF)
switch (c) {
case 'a':

if (bfig)

- 1 -

GETOPT(3C)

}
SEE ALSO

getopt(1).

errfig++;
else

afig++;
break;

case 'b':
if (afig)

errfig++;
else

break;
case 'f':

ifile = optarg;
break;

case '0':
ofile = optarg;
bufsiza = 512;
break;

case '?':
errfig++;

}

GETOPT(3C)

if (errfig) {

}

fprintf (stderr, "usage: ... ");
exit (2);

for (; optind < argc; optind++) {
if (access (argv[optind], 4)) {

- 2 -

GETP ASS (3C) GETP ASS (3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

FILES

Getpa88 reads up to a newline or EOF from the file / dey /tty,
after prompting on the standard error output with the null­
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters. If
/ dey /tty cannot be opened, a NULL pointer is returned. An
interrupt will terminate input and send an interrupt signal to the
calling program before returning.

/dev/tty

SEE ALSO
crypt(3C).

WARNING

BUGS

The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/0, more than
might be expected.

The return value points to static data whose content is overwrit­
ten by each call.

- 1 -

GETPENT(3) (AT&T UNIX PC only) GETPENT(3)

NAME
getpent, endpent - get and clean up printer status file entries

SYNOPSIS
#include <lp.h>

int getpent(p)
struct pstat *p;
int endpentO

DESCRIPTION

FILES

Getpent returns a structure describing a printer that is installed in
the lp spooler subsystem. EOF is returned when no more printers
are available.

Endpent is used to clean up after the last call to getpent.

struct pstat /* printer status entry * /
{

};

char p_dest[DESTMAX+l]; /* destination name of printer * /
int p-pid; /* if busy, process id that is * /

/* printing, otherwise 0 * /
char p_rdest[DESTMAX+l];/* if busy, the destination */

/* requested by user at time of * /
1* request, otherwise "." * /

int p_seqno; /* if busy, sequence # of * /
/* printing request * /

time_t p_date; 1* date last enabled/disabled * /
char p_reason[P .-RSIZE]; /* if enabled, then "enabled" * /

1* otherwise the reason the * /
/* printer has been disabled. * /

short p_flags; /* See below for flag values. * /

/* Value interpretation for p_flags: * /

#define
#define
#define

P..ENAB 1
P _AUTO 2
P _BUSY 4

/* printer enabled * /
/* disable printer automatically * /
/* printer now printing a request * /

These subroutines are located in the libdev library
U usr /lib /libdev).

. 1 -

GETPW(3C) GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, bur)
int uid;
char *bur;

DESCRIPTION

FILES

Getpw searches the password file for a user ID number that equals
uid, copies the line of the password file in which uid was found
into the array pointed to by bu/, and returns o. Getpw returns
non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems
and should not be used; see getpwent(3C) for routines to use
instead.

/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

- 1 -

GETPWENT (3C) GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get pass­
word file entry

SYNOPSIS
#include < pwd.h >

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

DESCRIPTION
Getpwent, getpwuid and getpwnam each returns a pointer to an
object with the following structure containing the broken-out
fields of a line in the /etc/passwd file. Each line in the file con­
tains a "passwd" structure, declared in the <pwd.h> header
file:

struct passwd {
char
char
int

};

int
char
char
char
char
char

*pw_name;
*pw _passwd;
pw_uid;
pw~id;
*pw_age;
*pw_comment;
*pw~ecos;

*pw_dir;
*pw_shell;

struct comment {
char *c_dept;
char *c_name;
char *c_acct;
char *c_bin;

};
This structure is declared in < pwd.h > so it is not necessary to
redeclare it.

The pw_comment field is unused; the others have meanings
described in passwd(4).

Getpwent when first called returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to
search the entire file. Getpwuid searches from the beginning of
the file until a numerical user ID matching uid is found and
returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the

- 1 -

GETPWENT (3C) GETPWENT (3C)

FILES

particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL
pointer.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the
password file when processing is complete.

/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use <stdio.h>, which causes them to
increase the size of programs, not otherwise using standard I/O,
more than might be expected.

All information is contained in a static area, so it must be copied
if it is to be saved.

- 2 -

GETS (3S) GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads characters from the standard input stream, std£n, into
the array pointed to by s, until a new-line character is read or an
end-of-file condition is encountered. The new-line character is dis­
carded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to
by s, until n -1 characters are read, or a new-line character is
read and transferred to s, or an end-of-file condition is encoun­
tered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If
a read error occurs, such as trying to use these functions on a file
that has not been opened for reading, a NULL pointer is returned.
Otherwise s is returned.

- 1 -

GETUT(3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmp­
name - access utmp file entry

SYNOPSIS
#include < utmp.h >
struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a struc­
ture of the following type:

struct utmp {
char

};

char
char
short
short
struct

short
short

} ut_exit;

ut_user[8J;
ut_id[4J;
ut_line[12J;
ut_pid;
ut_type;
exit_status {

e_termination;
e_exit;

/* User login name */
/* /etc/inittab id (usually line #) */
/* device name (console, Inxx) */
/* process id */
/* type of entry */

/* Process termination status */
/ * Process exit status * /
/* The exit status of a process
* marked as DEADYROCESS. */
/* time entry was made */

Getutent reads in the next entry from a utmp-like file. If the file
is not already open, it opens it. If it reaches the end of the file, it
fails.

Getutid searches forward from the current point in the utmp file
until it finds an entry with a uCtype matching id- > uCtype if
the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS or DEADYROCESS, then getu­
tid will return a pointer to the first entry whose type is one of
these four and whose uCid field matches id- > uCid. If the end
of file is reached without a match, it fails.

Getutline searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS which also has a uCline string matching the

- 1 -

GETUT(3C) GETUT(3C)

FILES

line- > uCline string. If the end of file is reached without a
match, it fails.

Pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected that
normally the user of pututline will have searched for the proper
entry using one of the getut routines. If so, pututline will not
search. If pututline does not find a matching slot for the new
entry, it wiH add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This
should be done before each search for a new entry if it is desired
that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file exam­
ined, from /etc/utmp to any other file. It is most often expected
that this other file will be /etc/wtmp. If the file doesn't exist,
this will not be apparent until the first attempt to reference the
file is made. Utmpname does not open the file. It just closes the
old file if it is currently open and saves the new file name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for per­
missions or having reached the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are made.
Each call to either getutid or getutline sees the routine examine
the static structure before performing more I/O. If the contents of
the static structure match what it is searching for, it looks no
further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each
success, or getutline would just return the same pointer over and
over again. There is one exception to the rule about removing the
structure before further reads are done. The implicit read done by
pututline if it finds that it isn't already at the correct place in the
file will not hurt the contents of the static structure returned by
the getutent, getutid or getutl£ne routines, if the user has just
modified those contents and passed the pointer back to pututline .

These routines use buffered standard I/O for input, but pututline
uses an unbuffered non-standard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

- 2 -

HSEARCH (3C) HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from· Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicat­
ing the location at which an entry can be found. Item is a struc­
ture of type ENTRY (defined in the < search.h > header file) con­
taining two pointers: item.key points to the comparison key, and
item. data points to any other data to be associated with that key.
(Pointers to types other than character should be cast to pointer­
to-character.) Action is a member of an enumeration type
ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that
no entry should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. Nel is an estimate of the maximum
number of entries that the table will contain. This number may
be adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by
another call to hcreate .

Hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other options available which
the user may select by compiling the hsearch source with the fol­
lowing symbols defined to the preprocessor:

DIV

USCR

Use the remainder modulo table size as the
hash function instead of the multiplicative
algorithm.

Use a User Supplied Comparison Routine for
ascertaining table membership. The routine
should be named hcompar and should
behave in a manner similar to strcmp (see
string (3C».

CHAINED Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

- 1 -

HSEARCH (3C) HSEARCH (3C)

START Place new entries at the
beginning of the linked list
(default is at the end).

SORTUP Keep the linked list sorted
by key in ascending order.

SORTDOWN Keep the linked list sorted
by key in descending order.

Additionally, there are preprocessor flag::> for obtaining debugging
printout (-DDEBUG) and for including a test driver in the calling
routine (-DDRIVER). The source code should be consulted for
further details.

SEE ALSO
bsearch(3C), Isearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

BUGS

Hsearch returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table
is full.

Hcreate returns zero if it cannot allocate sufficient space for the
table.

Only one hash search table may be active at any given time.

- 2 -

HYPOT(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include < math.h >
double hypot (x, y)
double x, y;

DESCRIPTIQN
H,!!pot returns

sqrt(x * x + Y * y),
taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed wit}:l the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

- 1 -

L3TOL (30) L3TOL(3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (lp, cp, n)
long *lp;
char *cp;
int n;

void Itol3 (cp, lp, n)
char *cp;
long *lp;
int n;

DESCRIPTION
L9tol converts a list of n three-byte integers packed into a charac­
ter string pointed to by cp into a list of long integers pointed to
by lp.

Ltol9 performs the reverse conversion from long integers (lp) to
three-byte integers (cp).

These functions are useful for file-system maintenance where the
block numbers are three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

- 1 -

LDAHREAD (ax) LDAHREAD (ax)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <fiIehdr.h>
#include <Idfcn.h>

int Idahread (Idptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, ldahread reads
the archive header of the common object file currently associated
with ldptr into the area of memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if
TYPE(ldptr) does not represent an archive file, or if it cannot
read the archive header.

The program must be loaded with the object file access routine
library libId."".

SEE ALSO
Idclose(3X), Idopen(3X), ldfcn(4).

- 1 -

LDCLOSE (aX) LDCLOSE (ax)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldclose (ldptr)
LDFILE *ldptr;

int ld&.close (ldptr)
LDFILE *Idptr;

DESCRIPTION
Ldopen(3X) and Idclose are designed to provide uniform access to
both simple object files and object files that are members of
archive files. Thus an archive of common obj ect files can be pro­
cessed as if it were a series of simple common object files.

If TYPE(ldptr) does not represent an archive file, ldclose will close
the file and free the memory allocated to the LDFILE structure
associated with Idptr. If TYPE (ldptr) is the magic number of an
archive file, and if there are any more files in the archive, ldclose
will reinitialize OFFSET(ldptr) to the file address of the next
archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent Idopen(3X). In all other cases, ldclose
returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). Ldaclose always returns SUCCESS. The function
is often used in conjunction with ldaopen.

The program must be loaded with the object file access routine
library Iibld.&..

SEE ALSO
fclose(3S), Idopen(3X), ldfcn(4).

- 1 -

LDFlffiEAD (ax) LDFlffiEAD (ax)

NAME
ldfhread - read the file header of a comnion object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idrcn.h >

int Idrhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently
associated with ldptr into the area of memory beginning at
filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it
cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER(ldptr) defined in Idrcn.h (see ldfcn(4)). The
information in any field, fieldname, of the file header may be
accessed using HEADER(Idptr).fieldname.

The program must be loaded with the object file access routine
library libId.a.

SEE ALSO
Idclose(3X), IdopEm(3X), Idfcn(4).

- 1 -

LDLREAD (3X) LDLREAD (3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a com­
mon obj ect file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenurn.h>
#include < ldfcn.h >

int ldlread(ldptr, fcnindx, linen urn, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenurn;
LINENO linent;

int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitern(ldptr, linenurn, linent)
LDFILE *ldptr;
unsigned short linenurn;
LINENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common object file
currently associated with ldptr. Ldlread begins its search with the
line number entry for the beginning of a function and confines its
search to the line numbers associated with a single function. The
function is identified by fcnindx, the index of its entry in the
object file symbol table. Ldlread reads the entry with the smallest
line number equal to or greater than l£nenum into l£nent.

Ldlinit and ldlitem together perform exactly the same function as
ldlread, After an initial call to ldlread or ldHn£t, ldl£tem may be
used to retrieve a series of line number entries associated with a
single function. Ldlinit simply locates the line number entries for
the function identified by fcnindx, Ldlitem finds and reads the
entry with the smallest line number equal to or greater than line­
num into linent.

Ldlread, 1 dlin it , and ldlitem each return either SUCCESS or
FAILURE. Ldlread will fail if there are no line number entries in
the object file, if fcnindx does not index a function entry in the
symbol table, or if it finds no line number equal to or greater than
h'nenum. Ldlinit will fail if there are no line number entries in the
object file or if fcnindx does not index a function entry in the sym­
bol table. Ldlitem will fail if it finds no line number equal to or
greater than linenum.

The programs must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbindex(3X), ldfcn(4).

- 1 -

LDLSEEK(3X) LDLSEEK (3X)

NAME
ldlseek,ldnlseek - seek to line number entries of a section of a
common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldrcn.h>

int Idlseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnlseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnlseek seeks to the line number entries of the section specified
by sectname.

Ldlseek and ldnlseek return SUCCESS or FAILURE. Ldlseek will
fail if sectindx is greater than the number of sections in the object
file; ldnlseek will fail if there is no section name corresponding
with *sectname. Either function will fail if the specified section
has no line number entries or if it cannot seek to the specified line
number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

LDOHSEEK (ax) (not on PDP-ll) LDOHSEEK (ax)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include <stdio.h>
#include < filehdr.h >
#include <Idfcn.h>

int Idohseek (Idptr)
LDFILE *Idptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if
the object file has no optional header or if it cannot seek to the
optional header.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfhread(3X), ldfcn(4).

- 1 -

LDOPEN(3X) LDOPEN(3X)

NAME
ldopen, ldaopen - open a common obj ect file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < ldfcn.h >

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION
Ldopen and ldclose(3X) are designed to provide uniform access to
both simple object files and object files that are members of
archive files. Thus an archive of common object files can be pro­
cessed as if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and
allocate and initialize the LDFILE structure, and return a pointer
to the structure to the calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number,
ldopen will reinitialize the LDFILE structure for the next archive
member of filename.

Ldopen and ldclose are designed to work in concert. Ldclose will
return FAILURE only when TYPE(ldptr) is the archive magic
number and there is another file in the archive to be processed.
Only then should ldopen be called with the current value of ldptr.
In all other cases, in particular whenever a new filename is
opened, ldopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and ldclose.

/ * for each filename to be processed * /
ldptr = NULL;
do

if ((ldptr = ldopen(filename, ldptr)) != NULL)

{

}

1* check magic number * /
/* process the file */

} while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename
anew and allocate and initialize a new LDFILE structure, copying
the TYPE, OFFSET, and HEADER fields from oldptr. Ldaopen
returns a pointer to the new LDFILE structure. This new pointer
is independent of the old pointer, oldptr. The two pointers may
be used concurrently to read separate parts of the object file. For

- 1 -

LDOPEN(3X) LDOPEN(3X)

example, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed
symbol table entries.

Both ldopen and ldaopen open filename for reading. Both func­
tions return NULL if filename cannot be opened, or if memory for
the LDFILE structure cannot be allocated. A successful open does
not insure that the given file is a common object file or an
archived object file.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fopen(3S), Idclose(3X), ldfcn(4).

- 2 -

LDRSEEK (ax) LDRSEEK (ax)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a com­
mon obj ect file

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include < Idfcn.h >

int Idrseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnrseek (Idptr, sectna.me)
LDFILE *Idptr;
cha.r *sectns.me;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by
sectname.

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek
will fail if sectindx is greater than the number of sections in the
object file; ldnrseek will fail if there is no section name correspond­
ing with sectname. Either function will fail if the specified section
has no relocation entries or if it cannot seek to the specified relo­
cation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library Iibld.s..

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), ldfcn(4).

- 1 -

LDSHREAD (3X) LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a
common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int Idshread (ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread (ldptr, sectname, secthead)
LDFILE *ldptr;
char sectname;
SCNHDR *secthead;

DESCRIPTION
Ldshread reads the section header specified by seet£ndx of the
common object file currently associated with ldptr into the area of
memory beginning at seethe ad.

Ldnshread reads the section header specified by seetname into the
area of memory beginning at seethead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread
will fail if seetindx is greater than the number of sections in the
object file; ldnshread will fail if there is no section name
corresponding with seetname. Either function will fail if it cannot
read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

- 1 -

LDSSEEK(3X) LDSSEEK (3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a com­
mon object file

SYNOPSIS
#include < stdio.h >
#include <fiIehdr.h>
#include <Idfcn.h>

int Idsseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common
object file currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek
will fail if sectindx is greater than the number of sections in the
object file; ldnsseek will fail if there is no section name correspond­
ing with sectname. Either function will fail if there is no section
data for the specified section or if it cannot seek to the specified
section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

LDTBINDEX (ax) LDTBINDEX (ax)

NAME
ldtbindex - compute the index of a symbol table entry of a com­
mon object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include < Idfcn.h >

long Idtbindex (Idptr)
LDFILE *Idptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry at
the current position of the common object file associated with
ldptr.

The index returned by ldtbindex may be used in subsequent calls
to Idtbread(3X). However, since ldtbindex returns the index of the
symbol table entry that begins at the current position of the
object file, if ldtbindex is called immediately after a particular
symbol table entry has been read, it will return the the index of
the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library libld.&..

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), ldfcn(4).

- 1 -

LDTBREAD (ax) LDTBREAD (ax)

NAME
ldtbread - read an indexed symbol table entry of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <Idfcn.h>

int Idtbread (Idptr, symindex, symbol)
LDFILE *Idptr;
long symindex;
SYMENT *symbol;

DESCRIPTION
Ldtbread reads the symbol table entry specified by symz"ndex of
the common object file currently associated with ldptr into the
area of memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if
symindex is greater than the number of symbols in the object file,
or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library IibId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbseek(3X), Idfcn(4).

- 1 -

LDTBSEEK (3X) LDTBSEEK (3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < ldfcn.h >

int ldtbseek (ldptr)
LDFILE *Idptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently
associated with ldptr.

Ldtbseek return SUCCESS or FAILURE. Ldtbseek will fail if the
symbol table has been stripped from the object file, or if it cannot
seek to the symbol table.

The program must be loaded with the object file access routine
library libld.s..

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idfcn(4).

- 1 -

LOCKF(3C) LOCKF(3C)

NAME
lockf - record locking on files

SYNOPSIS
#include < unistd.h >

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION
The lockf command will allow sections of a file to be locked;
advisory or mandatory write locks depending on the mode bits of
the file [see chmod(2)]. Locking calls from other processes which
attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates.
[See fcntl(2) for more information about record locking.]

Fz'ldes is an open file descriptor. The file descriptor must have
O_WRONLYor O_RDWR permission in order in order to estab­
lish lock with this function call.

Functz"on is a control value which specifies the action to be taken.
The permissible values for functz'on are defined in <unistd.h>
as follows:

#define F _ULOCK 0 1* Unlock a previously locked section * /
#define F J-OCK 1 1* Lock a section for exclusive use * /
#define F _TLOCK 2 /* Test and lock a section for exclusive use * /
#define F _TEST 3 /* Test section for other process' locks * /
All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F _TEST is used to detect if a lock by another process is present
on the specified section. F _LOCK and F _TLOCK both lock a
section of a file if the section is available. F _ULOCK removes
locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file
and extends forward for a positive size and backward for a nega­
tive size (the preceding bytes up to but not including the current
offset). If sz'ze is zero, the section from the current offset through
the largest file offset is locked (that is, from the current offset
through the present or any future end-of-file). An area need not
be allocated to the file in order to be locked as such locks may
exist past the end-of-file.

The sections locked with F _LOCK or F _TLOCK may, in whole or
in part, contain or be contained by a previously locked section for
the same process. When this occurs, or if adj acent sections occur,
the sections are combined into a single section. If the request
requires that a new element be added to the table of active locks
and this table is already full, an error is returned, and the new
section is not locked.

- 1 -

LOCKF(3C) LOCKF(3C)

F _LOCK and F _TLOCK requests differ only by the action taken
if the resource is not available. F _LOCK will cause the calling
process to sleep until the resource is available. F _TLOCK will
cause the function to return a -1 and set errno to [EACCES]
error if the section is already locked by another process.

F _ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro­
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lockf or fcntl scan for a deadlock prior to
sleeping on a locked resource. An error return is made if sleeping
on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

The lock! utility will fail if one or more of the following are true:

[EBADF]
F£ldes is not a valid open descriptor.

[EACCES]
Cmd is F _TLOCK or F _TEST and the section is already
locked by another process.

[EDEADLK]

SEE ALSO

Cmd is F _LOCK and a deadlock would occur. Also the
cmd is either F_LOCK, F_TLOCK, or F_ULOCK and the
number of entries in the lock table would exceed the
number allocated on the system.

chmod(2), close(2), creat(2), fcntl(2), intro(2), read(2), write(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

WARNINGS
Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which
is/was locked. The standard I/O pacakage is the most common
source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN
rather than EACCES when a section of a file is already locked by
another process, portable application programs should expect and
test for either value.

- 2 -

LOGNAME (3X)

NAME
logname - return login name of user

SYNOPSIS
char *logname()

DESCRIPTION

LOGNAME (3X)

Logname returns a pointer to the null-terminated login name; it
extracts the $LOGNAME variable from the user's environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile

SEE ALSO
env(l), login(lM), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwrit-
ten by each call. '

This method of determining a login name is subject to forgery.

- 1 -

LSEARCH (3C) LSEARCH (3C)

NAME
lsearch - linear search and update

SYNOPSIS
#include < stdio.h >
#include < search.h >
char *lsearch «char *)key, (char *)base,
nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

char *lfind «char *)key, (char *)base,
nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a
datum may be found. If the datum does not occur, it is added at
the end of the table. Key points to the datum to be sought in the
table. Base points to the first element in the table. Nelp points
to an integer containing the current number of elements in the
table. The integer is incremented if the datum is added to the
table. Compar is the name of the comparison function which the
user must supply (strcmp, for example). It is called with two
arguments that point to the elements being compared. The func­
tion must return zero if the elements are equal and non-zero other­
wise.

Lfind is the same as Lsearch except that if the datum is not
found, it is not added to the table. Instead, a NULL pointer is
returned.

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE
This fragment will read in less than TABSIZE strings of length
less than ELSIZE and store them in a table, eliminating dupli­
cates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 30
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE],
*lsearch();

- 1 -

LSEARCH (3C) LSEARCH (3C)

unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) Isearch(Iine,(char *)tab,&nel,

ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

BUGS

If the searched for datum is found, both lsearch and lfind return a
pointer to it. Otherwise, lfind returns NULL and lsearch returns a
pointer to the newly added element.

Undefined results can occur if there is not enough room in the
table to add a new item.

- 2 -

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

DESCRIPTION
Malloe and free provide a simple general-purpose memory alloca­
tion package. MaUoe returns a pointer to a block of at least st"ze
bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated
by maUoe; after free is performed this space is made available for
further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by maltoe is
overrun or if some random number is handed to free.

MaUoe allocates the first big enough contiguous reach of free space
found in a circular search from the last block allocated or freed,
coalescing adjacent free blocks as it searches. It calls sbrk (see
brk(2)) to get more memory from the system when there is no
suitable space already free.

Realtoe changes the size of the block pointed to by ptr to st"ze
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes. If no free block of st'ze bytes is available in the storage
arena, then realtoe will ask maltoe to enlarge the arena by st'ze
bytes and will then move the data to the new space.

Realtoe also works if ptr points to a block freed since the last call
of maltoe, realloe, or eaUoe; thus sequences of free, maltoe and
realtoe can exploit the search strategy of maUoe to do storage
compaction.

Caltoe allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

Mallopt provides for control over the allocation algorithm. The
available values for emd are:

Set maxfast to value. The algorithm allo­
cates all blocks below the size of maxfast
in large groups and then doles them out
very quickly. The default value for max­
fast is 24.

- 1 -

MALLOC(aC) MALLOC(3C)

Set numlblks to value. The above men­
tioned "large groups" each contain
numlblks blocks. Numlblks must be greater
than O. The default value for numlblks is
100.

Set grain to value. The sizes of all blocks
smaller than maxfast are considered to be
rounded up to the nearest multiple of
grain. Grain must be greater than O. The
default value of grain is the smallest
number of bytes which will allow align­
ment of any data type. Value will be
rounded up to a multiple of the default
when grain is set.

Preserve data in a freed block until the
next maUoe, reaUoe, or eaUoe. This option
is provided only for compatibility with the
old version of maUoe and is not recom­
mended.

These values are defined in the < malloc.h> header file.

MaUopt may be called repeatedly, but may not be called after the
first small block is allocated.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

SEE ALSO
brk (2).

DIAGNOSTICS

NOTE

MaUoe, realloe and ealloe return a NULL pointer if there is not
enough available memory. When realloe returns NULL, the block
pointed to by ptr is left intact. If mallopt is called after any allo­
cation, or if cmd or value are invalid, non-zero is returned. Other­
wise, it returns zero.

Search time increases when many objects have been allocated;
that is, if a program allocates but never frees, then each successive
allocation takes longer.

- 2 -

MA THERR (3M) MA THERR (3M)

NAME
matherr - error-handling function

SYNOPSIS
#include < math.h >
int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors
are detected. Users may define their own procedures for handling
errors by including a function named matherr in their programs.
Matherr must be of the form described above. A pointer to the
exception structure x will be passed to the user-supplied matherr
function when an error occurs. This structure, which is defined in
the < math.h > header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

};
The element type is an integer describing the type of error that
has occurred, from the following list of constants (defined in the
header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

domain error
singularity
overflow
underflow
total loss of significance
partial loss of significance

The element name points to a string containing the name of the
function that had the error. The variables argl and arg2 are the
arguments to the function that had the error. Retval is a double
that is returned by the function having the error. If it supplies a
return value, the user's matherr must return non-zero. If the
default error value is to be returned, the user's matherr must
return o.
If matherr is not supplied by the user, the default error-handling
procedures, described with the math functions involved, will be
invoked upon error. These procedures are also summarized in the
table below. In every case, errno is set to non-zero and the pro­
gram continues.

EXAMPLE
matherr(x)
register struct exception *x;
{

switch (x- > type) {
case DOMAIN:
case SING: /* print message and abort */

fprintf(stderr, "domain error in %s\n", x- >name);
abort();

- 1 -

MA THERR (3M) MA THERR (3M)

}

BESSEL:
yO, yl, yn
(neg. no.)

EXP:

POW:
(neg.)**(non-
int.),O**O

LOG:
log(O):
log(neg.):

SQRT:

GAMMA:

HYPOT:

SINH, COSH:

SIN, COS:

TAN:

ACOS,ASIN:

case OVERFLOW:
if (!strcmp("exp", x- >name)) {

/* if exp, print message, return the argument */
fprintf(stderr, "exp of %f\n", x- >arg1);
x- >retval = x- >arg1;

} else if (!strcmp("sinh", x- >name)) {
/* if sinh, set errno, return 0 */
errno = ERANGE;

} else

break;

x- >retval = 0;

/* otherwise, return HUGE */
x- >retval = HUGE;

case UNDERFLOW:
return (0); /* execute default procedure */

case TLOSS:
case PLOSS:

/* print message and return 0 */
fprintf(stderr, "loss of significance in %s\n", x->name);
x- >retval = 0;
break;

}
return (1);

DEFAULT ERROR HANDLING PROCEDURES

TypeB 0/ ErrorB

DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

- - H 0 - *
M, -H - - - - -

- - H 0 -

- - H 0 - -
M,D - - - - -

- M,-H - - - -
M,-H - - - - -
M,O - - - - -

- M,H - - - -
- - H - - -

- - H - - -

- - - - M,O M, *
- - H - 0 *

M,D - - - - -

- 2 -

MA THERR (3M) MA THERR (3M)

ABBREVIATIONS
* .Af3 much as possible of the value is returned.
M Message is printed.
H HUGE is returned.
-H -HUGE is returned.
o 0 is returned.

- 3-

MEMORY(3C) MEMORY(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory opera­
tions

SYNOPSIS
#include < memory.h >
char *memccpy (81, 82, c, n)
char *81, *82;
int c, n;

char *memchr (8, c, n)
char *8;
int c, n;

int memcmp (81, 82, n)
char *81, *82;
int n;

char *memcpy (81, 82, n)
char *81, *82;
int n;

char *mem8et (8, c, n)
char *8;
int c, n;

DESCRIPTION

NOTE

BUGS

These functions operate efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null charac­
ter). They do not check for the overflow of any receiving memory
area.

Memccpy copies characters from memory area 82 into 81, stop­
ping after the first occurrence of character c has been copied, or
after n characters have been copied, whichever comes first. It
returns a pointer to the character after the copy of c in 81, or a
NULL pointer if c was not found in the first n characters of 82.

Memchr returns a pointer to the first occurrence of character c in
the first n characters of memory area 8, or a NULL pointer if c
does not occur.

Memcmp compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or greater than 0,
according as 81 is lexicographically less than, equal to, or greater
than 82.

Memcpy copies n characters from memory area 82 to 81. It
returns 81.

Mem8et sets the first n characters in memory area 8 to the value
of character c. It returns 8 .

For user convenience, all these functions are declared in the
optional < memory.h > header file.

Memcmp uses native character comparison, which IS signed on
PDP-lls, unsigned on other machines.

- 1 -

MEMORY(3C) MEMORY(3C)

Character movement is performed differently in different imple­
mentations. Thus overlapping moves may yield surprises.

- 2 -

MENU(3T) (AT&T UNIX PC only) MENU(3T)

NAME
menu - display and accept menus

SYNOPSIS
#include <menu.h>
int menu(menu, op)
menu_t *menu;
int op;

DESCRIPTION
This routine manipulates a menu as determined by the operation
code (op). If the op arg is M~EGIN, the menu is initialized and
displayed. If op is M_INPUT, user input is accepted. If op is
M_END, the menu is terminated and removed from the display.
If op is M_DESEL, all currently-selected items are de-selected
before the menu is processed. These functions may be combined
in many ways. By specifying
(M_DESEL I M~EGIN I M_INPUT I M_END), the caller creates
a "pop-up)) menu which is initialized (displayed), used for input,
then removed. Generally, (M~EGIN I M_INPUT) is used for the
first call, M_INPUT for each subsequent interaction, and M_END
when the menu is to be discarded. M_DESEL can be added to
clear bad choices after an error.

During the M_INPUT function, the user may point to items with
the mouse or with the keyboard (arrows, Prev, Next, Beg, Home,
End). The user may mark entries with the mouse or keyboard
(Slect, Mark), or may qualify one or more items by typing. The
Cancl, Clear Line, Back Space, and Return keys perform their
generic editing functions. For larger menus, the Roll and Page
keys may be used to scroll through choices which do not fit in the
prevailing window.

All other keys, including Enter, are returned to the caller.

The menu structure has the following form:

typedef struct
{

char
char
char
char
char
char
char
char
char
int
track_t
int
int
int
mitem_t
mitem_t

*m_Iabel;
*m_title;
*m_prompt;
m_rows;
m_cols;
m_iwidth;
m_iheight;
m_flags;
m_Ibuf[M_MAXLINE];
m_win;
*m_track;
m_oldwidth;
m_oldheight;
m_selcnt;
*m_items;
*m_curi;

- 1 -

1* menu label * /
1* menu title * /
1* menu prompt * /
1* desired rows * /
1* desired co Is * /
1* item width * /
/* item height * /
1* flags * /
1* input buffer * /
/* window pointer * /
1* menu track list ptr * /
1* last window width * /
/* last window height * /
/* count of # selected * /
1* pointer to items * /
1* current item * /

MENU (3T) (AT&T UNIX PC only) MENU (3T)

mitem_t *m_topi;
} menu_t;

/* item at top of dpy * /

M_label is displayed in the menu's window label line. If m_label
is NULL, no label is displayed.

M_title is a title for the menu. If m_title is NULL, the menu is
displayed without any title. If m_title contains newline charac­
ters, all but the first line of the title are underlined.

M_prompt (when non-NULL) is an prompt for the menu. All
prompts are displayed on the system prompt line, generally
located at the bottom of the display.

M_rows and m_cols allow the caller to specify the number of
rows and columns of items. Either or both of these values may be
zero, in which case menu will try to pick "good" values. It is
quite common to specify "zero" rows and one column to force out­
put to be vertical. When both m_rows and m_cols are zero,
menu tries to fit the menu into an appealing rectangle.

M_iwidth specifies a maximum width for each item. If m_iwidth
is zero, menu will display as much of the item as possible given
the available window real-estate. If m_iwidth is non-zero, items
are automatically truncated to that width, regardless of other
parameters. This is very useful when generating multi-column
menus where the caller wishes to prevent one long item from dis­
rupting the columnar output. M_IWIDTH IS NOT YET IMPLE­
MENTED.

M_iheight allows the caller to specify the number of rows per item
on the display. Newline characters in the item's name cause
menu to advance to the next row. If m_iheight is zero, one-row
items are assumed. M_IHEIGHT IS NOT YET IMPLEMENTED.

M.JI,ags contains the M_SINGLE flag which prohibits the user
from selecting more than one item from the menu. If the
M_SINGLE flag is off, the user may select multiple items from the
menu. The M_VSEWIN flag, if set, will cause menu to use the
window supplied in m_win instead of creating its own. If
M_VSEWIN is set, M_BEGIN operations will re-size the window
(as necessary) and M_END operations do not delete the window.
The M_ WINNEW flag causes menu to use the "new" algorithm
to place the window. Basically, the new algorithm looks for rela­
tively empty screen space to place the window. M_ WINSON
causes menu to use the "son" algorithm which causes the new
window to slightly overlap the current window. If neither
M_ WINNEW nor M_ WINSON is given, the "popup" algorithm is
used. This causes the new window to appear near the middle of
the current window, inside it if possible. The M_NOMOVE,
M_NOHELP, and M_NORESIZE flags, if set, prevent the Move,
Help and Resize icons, respectively, from being displayed on the
menu border. The M_ASISTITLE flag, if set, causes the menu
title to be displayed as supplied by the user, i.e., without center­
mg.

- 2 -

MENU(3T) (AT&T UNIX PC only) MENU (3T)

M_lbuf is an array of characters which is used to assemble typed
input. It is always returned to the caller in case it is necessary to
record keystrokes. In addition, the user may enter keystroke data
which does not match any items. In this case m_selcnt is set to
zero on return.

M_win holds the window identifier associated with this menu. It
is allocated on an M_BEGIN call, used on subsequent calls, and
deleted on an M_END call. M_track is a pointer to the mouse­
tracking information required during menu interaction. The space
for this data is allocated on M_BEGIN and freed on M_END.

The caller should not use m_track, m_oldwidth, or m_oldheight.
They may be left un-initialized on call to M_BEGIN. If a value
must be given (as in a mitem_t initializer), a value of zero should
be used.

On return, m_selcnt contains a count of the number of selected
items.

M_items points to the array of menu items (see below). M_curi
points to the current item. The caller should point m_curi to the
default item. Menu will modify m_curi as the user moves the
highlighting around in the menu. The list of menu items is ter­
minated by an item whose mCname is NULL. M_topi contains a
pointer to the item which is at the top of the display. AB the win­
dow scrolls through the menu, m_topi changes to reflect the new
position of the view. The caller needn't initialize m_topi as menu
will compute a "good" initial view from the value in m_curi. In
general, callers will not read the value in m_topi and should never
write it.

Each item in the array pointed to by m_items and m_curi has
the following form:

typedef struct
{

char
char
int

} mitem_t;

*mi_name;
mi_flags;
mi_val;

1* name of item * /
1* flags * /
1* user-supplied value * /

MCname is the item name, mLjiags contains the M_MARKED
flag which indicates that this item should be marked (on call)
and/or was marked (on return) and/or the M_DIMMED flag
which indicates that this item should be displayed in lower­
intensity. MCval is unused by menu and is available for
application-specific data. Often, mCval contains a small positive
integer identifying the particular choice.

EXAMPLE
The following program illustrates a simple single-selection menu:

#include <tam.h>
#include <menu.h>
#include <stdio.h>
#include <kcodes.h>

- 3-

MENU(3T) (AT&T UNIX PC only)

mitem_t cmditems[] =
{

"Add", 0,0,
"Advance", a),
"Backspace", 0,2,
"Copy", 0,3,
"Create", 0,4,
"Delete", 0,5,
"nllmn" () f) - ----r) J ...,.)

"Examine", 0,7,
"Exit", 0,8,
"Finish", 0,9,
" *Weird", 0,10,
a, 0,0

};

menu_t cmdmenu =
{

};

"Single",
"Commands",
"Pick a command from the list",
0,1,0,0,
M_SINGLE,
{a},
0,0,0,0,0,
cmditems,
cmditems,
a

mitem_t multitems[1 =
{

};

" January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
a,

a),
0,2,
0,3,
0,4,
0,5,
0,6,
0,7,
0,8,
0,9,
0,10,
0,11,
0,12,
0,13,
0,14,
0,15,
0,16,
0,17,
0,18,
0,19,
0,0

- 4 -

MENU(3T)

MENU(3T) (AT&T UNIX PC only) MENU (3T)

menu_t multmenu =
{

};

mainO
{

}

"Multiple" ,
"Many Choices!",
"Pick multiple commands from the list",
0,0,0,0,
M_WINSON,
{O},
0,0,0,0,0,
multitems,
multitems,
o

int err;
int cmdop,multop;
char *which;

winit();
keypad(0,1);

cmdop = M~EGIN 1M_INPUT;
multop = M_BEGIN 1M_INPUT;

while(l)
{

}

which = "cmdmenu";
err = menu(&cmdmenu, cmdop);
cmdop &= "'M:_BEGIN;
if (err < 0 II err == Close)

break;

which = "multmenu"·
err = menu(&multm~nu, multop);
rilUltop &= -M~EGIN;
if (err < 0 II err == Close)

break;

if (err < 0)
{

}
wexit(O);

fprintf(stderr,"err %d in %s",err,which);
sleep(S);

- 5 -

MENU (3T) (AT&T UNIX PC only) MENU (3T)

FILES
/usr /include/menu.h
/usr /include/kcodes.h

SEE ALSO
form(3T), tam(3T).

DIAGNOSTICS
Menu returns non-negative keyboard codes (see kcodes.h) when
keyboard input termina.t.ed t.he menu interaction. Other return
values signal more serious errors and are defined in menu.h.

- 6 -

MESSAGE(3T) (AT&T UNIX PC only) MESSAGE (3T)

NAME
message - display error and help messages

SYNOPSIS
#include <message.h>

int message{mtype, hfile, htitle, format [, arg] ...)
int mtype;
char *hfile, *htitle, *format;

int exhelp{hfile, htitle)
char *hfile, *htitle;

DESCRIPTION
Message formats the passed message a la prt"ntf and displays the
message in a window that message creates. The message is
automatically wrapped to fit within the dimensions of the window,
and may contain embedded new lines. Message then waits for user
input and returns the character read to the caller.

Mtype can have one of the following values:

MT_HELP Displays help message
MT _ERROR Displays error message
MT_POPUP Displays a popup window
MT_QUIT Displays error message with cancel

option
MT_CONFIRM Displays confirmation message
MT_INFO Displays informational message

All message types except MT_POPUP display the available
choices (ENTER, CANCL, or HELP) and beep any other keys.
The MT_INFO message type takes the first line of the message
and uses it as the window label.

When HELP is selected, message executes uahelp, passing it hfile
and htitle as the help file name and initial help display title. Mes­
sage then waits for uahelp to return. If hfile is NULL, then the
HELP choice is not offered or accepted.

Exhelp executes uahelp directly, without going through an inter­
mediate help display. In both cases, if hfile is a full path name
then it is passed to uahelp as is, otherwise the pathname
jusrjlibjua is assumed.

EXAMPLES
To print an error message when a file isn't found:

message(MT_ERROR, "ua.hlp", "System errors",
"%s not found", name);

If the user presses the Help key in response to this message, then
uahelp will display the page on system errors in the user agent
help file.

- 1 -

MESSAGE (aT) (AT&T UNIX PC only) MESSAGE (aT)

To get confirmation:

message(MT_CONFIRM, NULL, NULL,
"%s will be overwritten",
name);

In this case, if the user presses Help, the key will be declared
invalid.

DIAGNOSTICS
Message returns the character typed by the user, or -1 if error.
Currently, the only error is Can't create w£ndow, and in this case,
message will display this error message on the prompt line of the
current window.

Exhelp returns -Ion error (argument error, fork failure, or exec
failure).

SEE ALSO
uahelp(l), tam(3T).

- 2 -

MKTEMP(3C) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template
by a unique file name, and returns the address of template. The
string in template should look like a file name with six trailing Xs;
mktemp will replace the Xs with a letter and the current process
ID. The letter will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

- 1 -

MONITOR(3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
short *buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes
calls for monitor with default parameters; monitor needn)t be
called explicitly except to gain fine control over profiling.

Monitor is an interface to projil(2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user sup­
plied) array of bUfsize short integers. Monaor arranges to record
a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The
lowest address sampled is that of lowpc and the highest is just
below highpc. Lowpc may not equal ° for this use of monitor. At
most nfunc call counts can be kept; only calls of functions com­
piled with the profiling option -p of cC(l) are recorded. (The C
Library and Math Library supplied when cc -p is used also have
call counts recorded.) For the results to be significant, especially
where there are small, heavily used routines, it is suggested that
the buffer be no more than a few times smaller than the range of
locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)())2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file
mon.out, use

monitor ((int (*)O)NULL, 0, 0, 0, 0);

Prof(l) can then be used to examine the results.

mon.out

SEE ALSO
cC(l), prof(1), profil(2), end(3C).

- 1 -

NLIST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include < a.out.h >
int nlist (file-name, nl)
char *file-name;
struct nlist *nl[];

DESCRIPTION
Nlist examines the name list in the executable file whose name is
pointed to by file-name, and selectively extracts a list of values
and puts them in the array of nlist structures pointed to by nl.
The name list nl consists of an array of structures containing
names of variables, types and values. The list is terminated with
a null name; that is, a null string is in the name position of the
structure. Each variable name is looked up in the name list of the
file. If the name is found, the type and value of the name are
inserted in the next two fields. If the name is not found, both
entries are set to O. See a.out(4) for a discussion of the symbol
table structure.

This subroutine is useful for examining the system name list kept
in the file /unix. In this way programs can obtain system
addresses that are up to date.

SEE ALSO
a.out(4).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be read or if it
doesn)t contain a valid name list.

Ntist returns -1 upon error; otherwise it returns O.

- 1 -

PASTE(3T) (AT&T UNIX PC only) PASTE(3T)

NAME
paste - paste buffer utilities

SYNOPSIS
#include <pbf.h>

FILE *pb_openO

int pb_check(stream)
FILE *stream;

int pb_seek(stream)
FILE *stream;

int pb_empty(stream)
FILE * stream;

char *pb_nameO

int pb_puts(ptr,stream)
char *ptr;
FILE *stream;

int pb_weof(stream)
FILE * stream;

char *pb~ets(ptr, n, stream)
char *ptr;
int n;
FILE *stream;

int pb~buf(ptr, n, fn, stream)
char *ptr;
int n;
int (*fn) 0;
FILE *stream;

char *adf~twrd(sptr, dptr)
char *sptr, *dptr;

char *adf~txcd(sptr, dptr)
char *sptr, *dptr;

int adf~ttok(ptr, tbl)
char *ptr;
struct s_kwtbl *tbl;

DESCRIPTION
Pb_open opens the paste buffer file and associates a stream with
it. Pb_open returns a pointer to the FILE structure associated
with the stream.

Pb_check determines if the paste buffer file associated with
stream contains any data, and returns TRUE if the paste buffer
is not empty, and FALSE otherwise.

Pb_seek scans the paste buffer file from the beginning for the end
of file, and then seeks to that displacement. It sets up the paste
buffer for appending.

- 1 -

PASTE(3T) (AT&T UNIX PC only) PASTE(3T)

Pb_empty empties the paste buffer file and closes it. It is intended
to be called atter the paste buffer file has been read.

Pb_name returns a pointer to a static area containing the name of
the paste buffer file. .

Pb_puts appends a null terminated text string to the paste buffer
file in ADF format. It has the same interface as jputs .

Pb_weoj writes an end of file code to the paste buffer file, and
closes the file. It is intended to be calied aiter the paste buffer file
has been written. .

Pb_gets reads the next string from the paste buffer file and con­
verts it to text. It has the same interface as jgets. Pb_gets
always returns EOF after 511 bytes have been read. To read
larger blocks of text, pb_gbuj must be used.

Pb_gbuj reads a paste buffer file entry and converts it to text. It
puts the results into the buffer passed to it. Pb_gbuj calls the
passed function to store the buffer at the end of the paste entry,
or when the buffer becomes full. When this function is called, it is
passed the buffer address, and the number of bytes in the buffer.
This function should return a negative value on error.

If a NULL pointer is passed in place of the function, then
pb __ gbuj returns a null-terminated string, stored in the passed
buffer. Note that pb_gbuj can only be called once, and the paste
buffer file should be marked empty after the call.

The three functions a df_gtwrd , adf_gtxcd, and adf-gttok are utili­
ties used by pb_gbuj to interpret the ADF format. Applications
that wish to access the ADF formatted files directly might use
them.

adf-gtwrd scans the input string pointed to by sptr and pulls o~t
the next word. It stores this word (null-terminated) to the buffer
pointed to by dptr, and returns an updated input pointer.

Adf-gtxcd pulls out the embedded text code from the input string
pointed to by sptr, and also returns an updated input pointer.
This text code is stored null-terminated in the buffer pointed to by
dptr. Adj_gtxcd should be called when a "\" is encountered in
the input line in a text field, and sptr should be pointing to the
character following the ((\."

Adj_gttok converts a word (a null-terminated string) to a token
(integer) and returns the token. The conversion is driven by the
passed keyword table. The keyword table structure is defined in
the include filephf.h. .

EXAMPLE
To implement the cut operation:

paste_file = pb_open 0;
if (paste_file == NULL)

message (MT_ERROR, "wp.hlp", "Paste",
"Unable to open or create paste buffer file");

- 2 -

PASTE(3T) (AT&T UNIX PC only) PASTE (3T)

else
{
chr = Enter;
if (pb_check (paste_file))

{
chr = message (MT_QUIT, "wp.hlp", "Paste",

"Paste buffer contains an entry - \ do you
wish to overwrite?");

}
if (chr == Enter)

{

}

... 1* Paste file is empty, or is OK to * /

... /* overwrite, write the paste file using * /

... 1* fwrite, fprintf, etc.

fclose (paste_file);
}

To implement the paste operation:

SEE ALSO

paste_file = pb_open 0;
if (paste_file == NULL)

message (MT_ERROR, "wp.hlp", "Paste",
"Unable to open or create paste buffer file");

else
{
if (p b_check (paste_file))

{
/* Paste file exists and is non empty, * /
/* Read the paste file using fread, * /
/* fscanf, etc.

}
else

message (MT_ERROR, "wp.hlp", "Paste",
"Paste buffer is empty");

p b_em pty (paste_file);
}

adf(4), message(3T), tam(3T).

DIAGNOSTICS
Pb_open returns a NULL pointer on failure. Pb_gets returns a
NULL pointer at end of file. Pb_puts returns EOF on failure.

- 3 -

PERROR(3C) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *s;

extern int errno;

extern char *sys_errlist[];

extern in t sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output, describ­
ing the last error encountered during a call to a system or library
function. The argument string s is printed first, then a colon and
a blank, then the message and a new-line. To be of most use, the
argument string should include the name of the program that
incurred the error. The error number is taken from the external
variable errno, which is set when errors occur but not cleared
when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sgs_errlist is provided; errno can be used as an index in
this table to get the message string without the new-line.
Sgs_nerr is the largest message number provided for in the table;
it should be checked because new error codes may be added to the
system before they are added to the table.

SEE ALSO
intro(2).

- 1 -

POPEN(3S) POPEN(3S)

NAME
pop en, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings
containing, respectively, a shell command line and an I/O mode,
either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed.
The value returned is a stream pointer such that one can write to
the standard input of the command, if the I/O mode is w, by
writing to the file stream; and one can read from the standard
output of the command, if the I/O mode is r, by reading from the
file stream.

A stream opened by popen should be closed by pclose, which
waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type r command may be used as
an input filter and a type w as an output filter.

SEE ALSO
pipe(2), wajt(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be
created, or if the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a "popen ed"
command.

If the original and "popen ed" processes concurrently read or write
a common file, neither should use buffered I/O, because the
buffering gets all mixed up. Problems with an output filter may
be forestalled by careful buffer flushing, e.g. with fflush; see
jclose(3S).

- 1 -

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg] . ..)
char *format;

int fprintf (stream, format [, arg]
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprintf
places "output lJ

, followed by the null character (\0), in consecu­
tive bytes starting at *s; it is the user's responsibility to ensure
that enough storage is available. Each function returns the
number of characters transmitted (not including the \0 in the case
of sprint!), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string that
contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If the for­
mat is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or
right, if the left-adjustment flag (see below) has been
given) to the field width;

A precision that gives the minimum number of digits to
appear for the d, 0, u, x, or X conversions, the number of
digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters
to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit
string: a null digit string is treated as zero.

An optional I specifying that a following d, 0, u, x, or X
conversion character applies to a long integer arg.

A character that indicates the type of conversion to be
applied.

- 1 -

PRINTF(3S) PRINTF(3S)

A field width or preCISIon may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the arg s specifying
field width or precision must appear before the arg (if any) to be
converted.

The flag characters and their meanings are:
The result of the conversion will be left-justified within
the field.

+ The result of a signed conversion will always begin
with a sign (+ or -).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be converted to
an "alternate form." For c, d, 5, and u conversions,
the flag has no effect. For ° conversion, it increases
the precision to force the first digit of the result to be a
zero. For x (X) conversion, a non-zero result will have
Ox (OX) prefixed to it. For e, E, f, g, and G conver­
sions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if
a digit follows it). For g and G conversions, trailing
zeroes will not be removed from the result (which they
normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation (x
and X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion.
The precision specifies the minimum number of digits
to appear; if the value being converted can be
represented in fewer digits, it will be expanded with
leading zeroes. The default precision is l. The result
of converting a zero value with a precision of zero is a
null string.

f The float or double arg is converted to decimal nota­
tion in the style U[-Jddd.ddd", where the number of
digits after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
U[..:....Jd.ddde±dd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6 digits
are produced; if the precision is zero, no decimal point

- 2 -

PRINTF(3S)

g,G

c
s

%

PRINTF(3S)

appears. The E format code will produce a number
with E instead of e introducing the exponent. The
exponent always contains at least two digits.
The float or double arg is printed in style r or e (or in
style E in the case of a G format code), with the preci­
sion specifying the number of significant digits. The
style used depends on the value converted: style e will
be used only if the exponent resulting from the conver­
sion is less than -4 or greater than the precision.
Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.
The character arg is printed.
The arg is taken to be a string (character pointer) and
characters from the string are printed until a null char­
acter (\0) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. If
the string pointer arg has the value zero, the result is
undefined. A null arg will yield undefined results.
Print a %; no argument is converted.

In no case does a non-existent or small field width cause trunca­
tion of a field; if the result of a conversion is wider than the field
width, the field is simply expanded to contain the conversion
result. Characters generated by printf and fprintf are printed as
if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02",
where weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d",
weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi = %.5f", 4*atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

- 3-

PUTC (3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
char c;
FILE *stream;

int putchar (c)
char c;

int fputc (c, stream)
char c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the posi­
tion where the file pointer, if defined, is pointing). Putehar(e) is
defined as pute(e, stdout). Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro.
Fpute runs more slowly than pute, but takes less space per invo­
cation.

Putw writes the word (i.e. integer) w to the output stream (at the
position at which the file pointer, if defined, is pointing). The size
of a word is the size of an integer and varies from machine to
machine. Putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of
Jreopen(see Jopen(3S)) will cause it to become buffered or line­
buffered. When an output stream is unbuffered information is
queued for writing on the destination file or terminal as soon as
written; when it is buffered many characters are saved up and
written as a block; when it is line-buffered each line of output is
queued for writing on the destination terminal as soon as the line
is completed (that is, as soon as a new-line character is written or
terminal input is requested). Setbuf(3S) may be used to change
the stream's buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S),
setbuf(3S).

DIAGNOSTICS
On success, these functions each return the value they have writ­
ten. On failure, they return the constant EOF. This will occur if

- 1 -

PUTC (3S) PUTC(3S)

BUGS

the file stream is not open for writing, or if the output file cannot
be grown. Because EOF is a valid integer, ferror(3S) should be
used to detect putw errors.

Because it is implemented as a macro, putc treats incorrectly a
stream argument with side effects. In particular, putc(c, *r++);
doesn't work sensibly. Fputc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw a.re ma.chine-dependent, and may not be
read using getw on a different processor. For this reason the use
of putw should be avoided.

- 2 -

PUTENV(3C) PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
Strt'ng points to a string of the form "name=value." Putenv
makes the value of the environment variable name equal to value
by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environ­
ment, so altering the string will change the environment. The
space used by string is no longer used once a new string-defining
name is passed to putenv.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space
via maUoe for an expanded environment, otherwise zero.

WARNINGS
Putenv manipulates the environment pointed to by envz"ron, and
can be used in conjunction with getenv. However, envp (the third
argument to mat'n) is not changed.

This routine uses malloe(3C) to enlarge the environment.

After putenv is called, environmental variables are not in alpha­
betical order.

A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while strt'ng is still
part of the environment.

- 1 -

PUTPWENT (3C) PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h >

int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a
pa/3/3wd structure created by getpwent (or getpwu£d or getpwnam),
putpwuid writes a line on the stream f which matches the format
of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its
operation, otherwise zero.

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

- 1 -

PUTS (3S) PUTS (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed
by a new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the rou­
tines try to write on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while /puts does not.

- 1 -

QSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort «char *) base, nel, sizeof (*base), compar)
unsigned int nel;
int (*compar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts
a table of data in place.

Base points to the element at the base of the table. Nel is the
number of elements in the table. Compar is the name of the com­
parison function, which is called with two arguments that point to
the elements being compared. The function must return an
integer less than, equal to, or greater than zero according as the
first argument is to be considered less than, equal to, or greater
than the second.

The pointer to the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
sort(l), bsearch(3C), Isearch(3C), string(3C).

- 1 -

RAND (3C) RAND (3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int ra.nd ()

void sra.nd (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a multiplicative congruential random-number generator
with period 232 that returns successive pseudo-random numbers in
the range from 0 to 216_1.

Stand can be called at any time to reset the random-number gen­
erator to a random starting point. The generator is initially
seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired.
Drand48(3C) provides a much better, though more elaborate,
random,;,number generator.

SEE ALSO
drand48(3C).

- 1 -

REGCMP(3X) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp(stringl [, string2, 0 0 0], 0)
char *stringl, *string2, 0 0 0;

char *regex(re, subject [, retO, 0 0 0])
char *re, *subject, *retO, 0 0 0;

extern char *Iocl;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the
compiled form. Malloc(3C) is used to create space for the vector.
It is the user's responsibility to free unneeded space so allocated.
A NULL return from regcmp indicates an incorrect argument.
Regcmp(1) has been written to generally preclude the need for
this routine at execution time.

Regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. Regex
returns NULL on failure or a pointer to the next unmatched char­
acter on success. A global character pointer loc1 points to where
the match began. Regcmp and reg ex were mostly borrowed from
the editor, ed(l); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their
associated meanings.

[] '" 0 A These symbols retain their current meaning.

$ Matches the end of the string, \n matches the new-line.

Within brackets the minus means through. For exam­
ple, [a-z] is equivalent to [abcd 0 0 oxyz]. The - can
appear as itself only if used as the last or first character.
For example, the character class expression []-]
matches the characters] and -.

+ A regular expression followed by + means one or more
times. For example, [0-9]+ is equivalent to
[0-9] [0-9] *.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of
times the preceding regular expression js to be applied.
m is the minimum number and u is a number, less than
256, which is the maximum. If only m is present (e.g.,
{m}), it indicates the exact number of times the regular
expression is to be applied. {m,} is analogous to
{m,infinity}. The plus (+) and star (*) operations are
equivalent to {I,} and {O,} respectively.

(0 0 0)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+l)th argu­
ment following the subject argument. At present, at
most ten enclosed regular expressions are allowed.
Regex makes its assignments unconditionally.

- 1 -

REGCMP (ax) REGCMP (aX)

(•••) Parentheses are used for grouping. An operator, e.g. *,
+, {}, can work on a single character or a regular
expression enclosed in parenthesis. For example,
(a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor; *ptr;

new cursor = regex((ptr = regcmp(""\n", 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string
pointed at by cursor.

Example 2:
char reto[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zO-9-!{0,7})$0", 0);
newcursor = regex(name, "123Testing321", reta);

This example will match through the string "Testing3" and will
return the address of the character after the last matched charac­
ter (cursor+ll). The string "Testing3" will be copied to the char­
acter array reto.

Example 3:
#include "file.i"
char *string, *newcursor;

new cursor = regex(name, string);

This example applies a precompiled regular expression in file.i (see
regcmp(l)) against string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(l), regcmp(l), malloc(3C).

The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The fol­
lowing user-supplied replacement for malloc(3C) reuses the same
vector saving time and space:

/ * user's program * /

malloc(n) {

}

static int rebuf[256];
return rebuf;

- 2 -

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer 1 .. ,)
char *format;

int fscanf (stream, format [, pointer 1)
FILE *stream;
char *format;

int sscanf (s, format [, pointer 1 ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character
string s. Each function reads characters, interprets them accord­
ing to a format, and stores the results in its arguments. Each
expects, as arguments, a control string format described below,
and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds)
which, except in two cases described below, cause input to be
read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character *, an optional
numerical maximum field width, an optional I or h indicating
the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi­
cated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is
exhausted.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a res­
tricted type. For a suppressed field, no pointer argument should
be given. The following conversion codes are legal:

% a single % is expected in the input at this point; no
assignment is done.

d a decimal integer is expected; the corresponding argument
should be an integer pointer.

- 1 -

SCANF(3S) SCANF(3S)

u an unsigned decimal integer is expected; the corresponding
argument should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument
should be an integer pointer.

x a hexadecimal integer is expected; the corresponding argu­
ment should be an integer pointer.

e,f,g a floating point number is expected; the next field is con­
ver~ed accordingly and stored through the corresponding
argument, which should be a pointer to a fioai. The
input format for floating point numbers is an optionally
signed string of digits, possibly containing a decimal point,
followed by an optional exponent field consisting of an E
or an e, followed by an optionally signed integer.

s a character string is expected; the corresponding argument
should be a character pointer pointing to an array of char­
acters large enough to accept the string and a terminating
\0, which will be added automatically. The input field is
terminated by a white-space character.

c a character is expected; the corresponding argument
should be a character pointer. The normal skip over
white space is suppressed in this case; to read the next
non-space character, use %ls. If a field width is given,
the corresponding argument should refer to a character
array; the indicated number of characters is read.

indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed by
a set of characters, which we will call the scanset, and a
right bracket; the input field is the maximal sequence of
input characters consisting entirely of characters in the
scanset. The circumflex, ("), when it appears as the first
character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not
contained in the remainder of the scanset string. There
are some conventions used in the construction of the scan­
set. A range of characters may be represented by the con­
struct first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or
equal to last, or else the dash will stand for itself. The
dash will also stand for itself whenever it is the first or the
last character in the scanset. To include the right square
bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a circumflex) of
the scanset, and in this case it will not be syntactically
interpreted as the closing bracket. The corresponding
argument must point to a character array large enough to
hold the data field and the terminating \0, which will be
added automatically.

The conversion characters d, u, 0, and x may be preceded by I or
h to indicate that a pointer to long or to short rather than to
int is in the argument list. Similarly, the conversion characters e

- 2 -

SCANF(3S) SCANF(3S)

, f , and g may be preceded by I to indicate that a pointer to
double rather than to float is in the argument list.

Scan! conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control
string. In the latter case, the offending character is left unread in
the input stream.

Scan! returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early
conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i; float x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to £ the value 25, to x the value 5.432, and name will
contain thompson \0. Or:

int i; float x; char name [50];
scanf ("%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to t', 789.0 to x, skip 0123, and place the string
56\0 in name. The next call to getchar (see getc(3S)) will return
a.

SEE ALSO

NOTE

getc(3S), printf(3S), strtod(3C), strtol(3C).

Trailing white space (including a new-line) is left unread unless
matched in the control string.

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for
missing or illegal data items.

The success of literal matches and suppressed assignments is not
directly determinable.

- 3-

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE ·stream;
char *buf;
int type, size;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read
or written. It causes the character array pointed to by buf to be
used instead of an automatically allocated buffer. If buf is a NULL
character pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells
how big an array is needed:

char buf[BUFSIZj;

Setbuf may be used after a stream has been opened but before it is
read or written. Type determines how stream will be buffered.
Legal values for type (defined in stdio.h) are:

_IOFBF causes input to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be
flushed when a new line is written, the buffer is full, or
input is requested.

_IONBF causes input and output to be completely unbuffered.

A buffer is normally ootained from maUoc(3C) at the time of the
first getc or putc (3S) on the file, except that the standard error
stream stderr is normally not buffered.

Output streams directed to terminals are always line-buffered
unless they are unbuffered.

SEE ALSO

NOTE

fopen(3S), getc(3S), malloc(3C), putc(3S).

A common source of error is allocating buffer space as an
"automatic" variable in a code block, and then failing to close the
stream in the same block.

- 1 -

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#inelude <setjrnp.h>

int setjrnp (env)
jrnp_buf env;

void longjrnp (env, val)
jrnp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_bul,
is defined in the <setjrnp.h> header file), for later use by
longjmp. It returns the value o.
Longjmp restores the environment saved by the last call of setjmp
with the corresponding env argument. After longjmp is completed
program execution continues as if the corresponding call of setjmp
(which must not itself have returned in the interim) had just
returned the value val. Longjmp cannot cause setjmp to return
the value o. If longjmp is invoked with a second argument of 0,
setjmp will return 1. All accessible data have values as of the
time longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called when env was never primed by a call to
setjmp, or when the last such call is in a function which has since
returned, absolute chaos is guaranteed.

- 1 -

SINH (3M) SINII(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >
double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
Sinh, cosh and tanh return respectively the hyperbolic sine, cosine
and tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE when the correct value would
overflow, and set errno to ERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

- 1 -

SLEEP (aC) SLEEP (aC)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time
may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed 1-second intervals, (on the
second, according to an internal clock) and (2) because any caught
signal will terminate the sleep following execution of that signal's
catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other
activity in the system. The value returned by sleep will be the
"unslept" amount (the requested time minus the time actually
slept) in case the caller had an alarm set to go off earlier than the
end of the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal and paus­
ing until it (or some other signal) occurs. The previous state of
the alarm signal is saved and restored. The calling program may
have set up an alarm signal before calling sleep; if the sleep time
exceeds the time till such alarm signal, the process sleeps only
until the alarm signal would have occurred, and the caller's alarm
catch routine is executed just before the sleep routine returns, but
if the sleep time is less than the time till such alarm, the prior
alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

- 1 -

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long numeric data in a machine independent
faShion

SYNOPSIS
sPlJtl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
Sputl(3X) will take the 4 bytes of the long value and place them in
memory starting at the address pointed to by buffer. The order­
ing of the bytes is the saqle across all machines. Sgetl will retrieve
the 4 bytes in memory starting at the address pointed to by buffer
and return the long value in the byte ordering of the host
machine. -

The usage of sputl(3X) and sgetl in combination provides a
machine independent way of storing long numeric data in an ASCII
file. The numeric . data stored in the portable archive file format
(see ar(4)) is written and read into/from buffers with sputl(3X)
and sgetl respectively.

A program which uses these functions must be loaded with the
object file access routine library libld.s..

SEE ALSO
ar(4).

- ~ -

SSIGNAL (3C) SSIGNAL (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include < signal.h >
int (*ssignal (sig, action))()
in t sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Ssignal and gsignal implement a software facility similar to s£g­
nal(2). This facility is used by the Standard C Library to enable
users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to ssignal asso­
ciates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be
taken.

The first argument to ssignal is a number identifying the type of
signal for which an action is to be established. The second argu­
ment defines the action; it is either the name of a (user defined)
action function or one of the manifest constants SIG_DFL
(default) or SIG_IGN (ignore). Ssignal returns the action previ­
ously established for that signal type; if no action has been esta­
blished or the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG_DFL and the action function is
entered with argument sig. Gsignal returns the value
returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1
and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0
and takes no other action.

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range
1 through 15 which are used by the Standard C Library to indi­
cate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere with
the operation of the Standard C Library.

SEE ALSO
signal(2), kill(2).

- 1 -

STDIO (3S) (AT&T UNIX PC Only) STDIO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 38 of this
manual constitute an efficient, user-level I/O buffering scheme.
The in-line macros getc (38) and putc(38) handle characters
quickly. The macros getchar and putchar, and the higher-level
routines /getc, /gets, /print/, /putc, /puts, /read, /scan/, /write,
gets, getw, print/, puts, putw, and scan/ all use or act as if they
use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is declared
to be a pointer to a defined type FILE. Fopen(38) creates certain
descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. Normally, there are three
open streams with constant pointers declared in the <stdio.h>
header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant BUFSIZ specifies the size of the buffers used
by the particular implementation.

An integer constant EOF (-1) is returned upon end-of-file or error
by most integer functions that deal with streams (see the indivi­
dual descriptions for details).

Any program that uses this package must include the header file
of pertinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub­
class 38 of this manual are declared in that header file and need
no further declaration. The constants and the following "func­
tions" are implemented as macros (redeclaration of these names is
perilous): getc, getchar, putc, putchar, /error, /eo/, clearerr, and
fileno.

SEE ALSO
open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(38),
cuserid(38), fclose(38), ferror(38), fopen(38), fread(38), fseek(38),
getc(38), gets(38), popen(38), printf(38), putc(38), puts(38),
scanf(38), setbuf(38), system(38), tmpfile(38), tmpnam(38),
ungetc(38).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly
including program termination. Individual function descriptions
describe the possible error conditions.

- 1 -

STDIPC(3C) STDIPC (3C)

NAME
stdipc - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key _t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply
a key to be used by the msgget(2), semget(2) and shmget(2) sys­
tem calls to obtain interprocess communication identifiers. One
suggested method for forming a key is to use the ftok subroutine
described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaining
portion as a sequence number. There are many other ways to
form keys, but it is necessary for each system to define standards
for forming them. If some standard is not adhered to, it will be
possible for unrelated processes to unintentionally interfere with
each other's operation. Therefore, it is strongly suggested that the
most significant byte of a key in some sense refer to a proj ect so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subse­
quent msgget, semget and shmget system calls. Path must be the
path name of an existing file that is accessible to the process. Id is
a character which uniquely identifies a project. Note that ftok will
return the same key for linked files when called with the same id
and that it will return different keys when called with the same
file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not acces­
sible to the process.

WARNING
If the file whose path is passed to ftok is removed when keys still
refer to the file, future calls to ftok with the same path and id will
return an error. If the same file is recreated, then ftok is likely to
return a different key than it did the original time it was called.

- 1 -

STRING(3C) STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include < string.h >
char *strcat (s1, s2)
char *s1, *s2;

char *strncat (s1, s2, n)
char *s1, *s2;
int n;

int strcnnp (s1, s2)
char *s1, *s2;

int strncnnp (s1, s2, n)
char *s1, *s2;
int n;

char *strcpy (s1, s2)
char *s1, *s2;

char *strncpy (s1, s2, n)
char *s1, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s, c;

char *strrchr (s, c)
char *s, c;

char *strpbrk (s1, s2)
char *s1, *s2;

int strspn (s1, s2)
char *s1, *s2;

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, s2)
char *s1, *s2;

DESCRIPTION
The arguments 81, 82 and 8 point to strings (arrays of characters
terminated by a null character). The functions 8trcat, 8trncat,
8trcpy and 8trncpy all alter 81. These functions do not check for
overflow of the array pointed to by 81.

Strcat appends a copy of string 82 to the end of string 81.
Strncat appends at most n characters. Each returns a pointer to
the null-terminated result.

Strcmp compares its arguments and returns an integer less than,
equal to, or greater than 0, according as 81 is lexicographically less
than, equal to, or greater than 82. Strncmp makes the same com­
parison but looks at n characters at most.

- 1 -

STRING(3C) STRING(3C)

NOTE

BUGS

Strcpy copies string 82 to 81 , stopping after the null character has
been copied. Strncpy copies exactly n characters, truncating 82
or adding null characters to 81 if necessary. The result will not be
null-terminated if the length of 82 is n or more. Each function
returns 81.

Strlen returns the number of characters in 8, not including the
terminating null character.

Strchr (8trrchr) returns a Dointer to the first (Jac:;t) OCClurp.nc:p. of
charact~r c in ~tring 8, or ~a NULL pointer if c' do~s not ~c~~~ i-~
the string. The null character terminating a string is considered
to be part of the string.

Strpbrk returns a pointer to the first occurrence in string 81 of
any character from string 82, or a NULL pointer if no character
from 82 exists in 81 .

Str8pn (8trc8pn) returns the length of the initial segment of string
81 which consists entirely of characters from (not from) string 82.

Strtok considers the string 81 to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string 82. The first call (with pointer 81
specified) returns a pointer to the first character of the first token,
and will have written a null character into 81 immediately follow­
ing the returned token. The function keeps track of its position in
the string between separate calls, so that on subsequent calls
(which must be made with the first argument a NULL pointer) will
work through the string 81 immediately following that token. In
tniQ "UT~.,r Ql,hQonllon+ l'\f':ll1Ct '11'1;11 '1'1'7"''''1, +'h-r",..,.,.h +1-."" l""I ~;T_ ... 1 , ;1 --
v _ .,... -J _uv'1 v.&.I.U VUlJ..UJ n J.J.J. n V.I..I.'- V.I..LJ. VU5.LJ. UJ.J.'C' OVJ. 1..115 ID.L U.1.l'-'11 .11V

tokens remain. The separator string 82 may be different from call
to call. When no token remains in 81, a NULL pointer is returned.

For user convenience, all these functions are declared in the
optional <string.h> header file.

Strcmp and 8trncmp use native character comparison, which is
signed on PDP-lIs, unsigned on other machines.

Character movement is performed differently in different imple­
mentations. Thus overlapping moves may yield surprises.

- 2 -

STRTOD (3C) STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
Strtod returns as a double-precision floating-point number, the
value represented by the character string pointed to by str. The
string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters
[as defined by isspace in ctype(3C)], then an optional sign, then a
string of digits optionally containing a decimal point, then an
optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char **)NULL, a pointer to the character
terminating the scan is returned in the location pointed to by ptr.
If no number can be formed, *ptr is set to str, and zero is
returned.

Ato/(str) is equivalent to strtod(str (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, =HUGE (as defined in
<math.h» is returned (according to the sign of the value), and
errno is set to ERANGE. If the correct value would cause
underflow, zero is returned and errno is set to ERANGE.

- 1 -

STRTOL(3C) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str;
char **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
Btrtol returns as a long integer the value represented by the char­
acter string str. The string is scanned up to the first character
inconsistent with the base. Leading "white-space)) characters are
ignored.

If the value of ptr is not (char **)NULL, a pointer to the character
terminating the scan is returned in *ptr. If no integer can be
formed, *ptr is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign, leading zeros are
ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thus: After an
optional leading sign, a leading zero indicates octal conversion,
and a leading "Ox)) or "OX)) hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assign­
ment, or by an explicit cast.

Atol(str) is equivalent to strtol(str, (char **)NULL, 10).

Ato£(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
scanf(3S), strtod(3C).

BUGS
Overflow conditions are ignored.

- 1 -

SWAB(3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed
to by to I exchanging adjacent even and odd bytes. It is useful for
carrying binary data between PDP-lIs and other machines.
Nbytes should be even and non-negative. If nbytes is odd and
positive swab uses nbytes -1 instead. If nbytes is negative swab
does nothing.

- 1 -

SYSTEM(3S) SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *striilg;

DESCRIPTION

FiLES

System causes the string to be given to sh(l) as input, as if the
string had beeri typed as a command at a terminal. The current
process waits until the shell has completed, then returns the exit
status of the shell.

/bin/sh

SEE ALSO
shU), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's / ba"n/ sh
in order to execute string. If the fork or exec fails, system returns
-1 and sets errno.

- 1 -

TAM(3T) (AT&T UNIX PC only) TAM(3T)

NAME
tam - a library of calls that supports terminal access, including
windows.

SYNOPSIS
#include <tam.h>

winitO

wexit(rval)

int iswindO

int wcreate(row,col,height,width,flags)
short row,col,height,width;
unsigned short flags;

int wdelete(wn)
short wn;

int wselect(wn}
short wn;

int wgetselO

int wgetstat(wn,wstatp)
short wn;
WSTAT *wstatp;

int wsetstat(wn,wstatp)
short wn;
WSTAT *wstatp;

int wputc(wn,c)
short wn;
char c;

int wputs(wn,cp)
short wn;
char *cp;

int wprintf(wn,fmt,argl ••• argn)
short wn;
char *fmt;

int wslk(wn,kn,llabel,slabel)
short wn;
short kn;
char *llabel, "'slabel;

int wslk(wn,O,slongl,slong2,sshort} /'" alternate form of
wslk '" /
short wn;

char "'slongl, "'slong2, "'sshort;

int wcmd(wn,cp)
short wn;
char "'cp;

int wprompt(wn,cp)
short wn;
char "'cp;

- 1 -

TAM(3T) (AT&T UNIX PC only)

int wlabel{wn,cp)
short wn;
char *cp;

int wrefresh{wn)
short wn;

int wuser{wn,cp)
short wn;
_l... __ * __ .
.......... "'p,

int wgoto(wn,row,coi)
short wn,rol,col;

int wgetpos{wn,rowp,colp)
short wn;
int *rowp,*colp;

int wgetc{wn);
short wn;

char *kcodemap{code);
unsigned char code;

int keypad(dummy,flag)
int dummy,flag;

int wsetmouse(wn,ms);
short wn;
struct umdata *ms;

int wreadmouse(wn,xp,yp,bp,rp)
Qhnl"t. urn" _ .. _. - ,
int *xp,*yp,*bp,*rp;

int wprexecO

int wpostwaitO

wnl (wn,flag)
short wn;
int flag;

wicon(wn, row, col, icp)
short wn, row, col;
struct icon *icp;

wicoff{wn, row, col, icp)
short wn, row, col;
struct icon *icp;

wtargetonO

DESCRIPTION

TAM(3T)

The Terminal Access Method (TAM) routines provide a device­
independent ANSI X3.64 interface to terminals. TAM also pro­
vides calls for creating, manipulating, and displaying to windows
and can support an optional mouse input device.

Multiple overlapping windows can appear simultaneously on the
screen. The characteristics of a window are its dimensions (height
and width), position on the screen, and position relative other
simultaneous windows. The UNIX PC kernel orders windows

- 2 -

TAM(3T) (AT&T UNIX PC only) TAM(3T)

according to which window is obscuring which other windows.
The top window in the sequence is always completely visible.
When a window is selected, it moves to the top, potentially over­
laying windows that were previously visible. For windows with
borders, row and column indicate the upper-left corner of the out­
sz'de of the window, while height and width describe the dimen­
sions of the £nside of the window. Of the flags, only NBORDER
applies to remote terminal windows. These flags are defined in
window(7) in sys/window.h; note that tam.h calls both
window.h and stdio.h .

The iswind() call determines if the terminal is local or remote.
The differences in the way TAM provides windows for bit-mapped
terminals versus remote terminals are described below.

For the UNIX PC bit-mapped screen terminal, either the same pro­
cess (application) or distinct processes can own simultaneous win­
dows. The UNIX PC kernel remembers the covered portions of any
window on a pixel basis. Each window is a separate device and
can have its tty modes set independently of the other windows.

Since file descriptors are used to access windows, a child process
can inherit the open windows of its parent. All of the usual UNIX
system calls apply, so an application can set the "close on exec"
bit via Jcntl() to prevent access to particular windows by a child
process.

A process can also set up a child process so that its standard input
and output point to a particular window by the usual technique­
closing file descriptors 0 and 1 (stdin and stdout) and duplicating
the window's file descriptor. Window changed signals are sent to
the process group associated with the particular window. Thus,
by default, a parent process receives signals concerning windows
created by its children. To prevent a parent from receiving these
signals, use the setpgrp() system call.

In the case when the child process is unaware of windows, the fol­
lowing parameters should also be fixed: tty modes should be set to
reasonable values and the signal SIGWIND should be ignored
rather than caught. (SIGWIND is ignored by default.)

A window which is owned by a particular application can be
manipulated without the consent of the application. A signal
(SIGWIND) is sent to the process group associated with the win­
dow to report any window changes. If a single process creates
multiple windows, it receives the SIGWIND signal when any of its
windows are changed. To respond appropriately to changes in its
window, an application must catch SIGWIND (the default is to
ignore SIGWIND) and issue a wgetstat() (described below) to
determine which windows changed and in what ways.

If an application changes characteristics of its own window, no sig­
nal is sent to the application. In fact, when any process in the
process group associated with the window changes the window
characteristics, no signal is sent. Some care should be taken when
an application changes its own window, since this might defeat the
wishes of the operator. For example, if a process makes its

- 3-

TAM(3T) (AT&T UNIX PC only) TAM(3T)

window as large as the screen and every time it receives the
81 GWIND signal it resets its window to the top and as large as
the screen, the user is effectively blocked from running any other
applications.

The major difference between the remote and UNIX PC terminals
from the application point of view is the lack of kernel level win­
dow support for remote terminals. TAM supports windows tran­
sparently within a given process, but knows nothing about win­
dows created by other processes. Remote terminals can display
mUltiple windows but, unlike the UNIX PC terminai, oniy one
application owns the screen at a time. TAM simulates the kernel
window functions for a particular application by maintaining a
screen image, as well as those portions of windows that are over­
layed. Each process controls the entire screen, and windows
created by other processes are erased when the new process issues
a wt"nit() call.

TAM uses the insert and delete line functions on remote terminals
for scrolling whenever the window is as wide as the screen. This
applies to windows with or without borders. Application program­
mers who are concerned with making their programs run
efficiently on remote terminals should use windows of full screen
width if planning on scrolling the window.

If an application creates a child process that writes to the screen,
then after the child process dies, the application must issue a spe­
cial wre!resh() call to restore its screen image. For remote termi­
nals, TAM provides window ID's, instead of file descriptors, for
accessing windows. OLlIer differences irom the bit-mapped termi­
nal are that the tty modes cannot be independently set and child
processes do not inherit windows.

TAM supports an optional mouse input device. Initially, mouse
reports are disabled, so applications that don't use the mouse
don't need to worry about it. When mouse reports are turned on
by the application, they are returned to the application as a spe­
cial 8-bit input code (or 7-bit input escape sequence) in the input
stream.

In the default enabled state, a mouse report is inserted in the
input stream on each change of the button state (whether each of
the three buttons is up or down). Thus, these reports are buffered
and are in sequence with any keyboard input.

The mouse report contains the mouse button state and the mouse
cursor coordinates. This mouse report can be read and parsed by
the application, or the application can use the wgetmouse() call,
which reads the information from the input stream and returns it
in a structure.

After being enabled, the mouse reports initially return only
changes in mouse buttons. Optionally, mouse reports can tell if
the mouse cursor goes outside (or inside) a specified rectangle. In
the case of the remote terminal, mouse reports are never received,
and the mouse related subroutine calls are ignored.

- 4 -

TAM(3T) (AT&T UNIX PC only) TAM (3T)

TAM routines are described below.

winitO

wexitO

iswindO

wcreateO

wdeleteO

wselectO

wgetselO

wgetstatO

wsetstatO

The wint·t() call sets up the process for window
access. Winit() must be called before any of the
other window calls.

This should be called in place of eX2"t(). Wexit()
is the same as exit() but also resets the parame­
ters set by winit() (e.g., tty modes).

Determines if the terminal is local or remote.
iswind() is boolean-if true, the screen is bit­
mapped.

Creates a window. Arguments are the row,
column of the top left corner of the window, the
height and width of the window, and flags. The
flags include whether or not the window has a
border and whether or not variable character
widths are allowed. The flags are described in
sys/window.h. wcreate() returns a window
number, wn, used in subsequent calls to that win­
dow. If wcreate() fails (returns -1), the program­
mer should direct an error message to the previous
window.

Deletes a specified window (wn). If the deleted
window is on top and other windows are below it,
the previously obscured windows become visible.

Selects the specified window (wn) as the current or
active one. If the window is covered, it moves to
the top. A window is implicitly selected when it is
created (wcreate) or modified (wsetstat).

Returns the wn of the currently selected window.

Returns the information in WSTAT for a specified
window (wn). Arguments are wn and the pointer
to WSTAT. The content of WSTAT is:

struct wstat
{

short begy,begx,height,width;

};
unsigned short uflags;}

typedef struct wstat WSTAT;

The information includes the position and dimen­
sions of the window, whether or not borders are on
or off, and whether or not variable width charac­
ters are allowed.

Sets the status for a specified window (wn).
Wsetstat() changes the parameters in WSTAT for
a specified window and selects the window impli­
citly.

- 5 -

TAM(3T)

wputcO

wputsO

wprintfO

(AT&T UNIX PC only) TAM(3T)

Outputs a specified character to a specified win­
dow (wn).

Outputs a specified character string to a specified
window (wn). (Similar to wputc() above.)

wprintf() does printf()'s to a specified window
(wn). (Similar to wputc() above.)

In output to windows, a subset of the ANSI X3.64 escape sequences
may be sent, and they are translated, if possible, for the particular
terminal (see termcap(S) for information on defining to T..A~\1 the
sequences recognized by a particular terminal). In the following
four output routines, however, only standard ASCII text characters
can be sent.

wslk()

wpromptO

wlabelO

wrefreshO

wuserO

wgoto()

Outputs a null-terminated string to a screen
labeled key, lines 28 and 29 on the screen. The
arguments include the specified window (wn), the
key number, and at least one character string.
The first form of wslk() writes a single key; the
alternate form writes all the screen labeled keys at
once more efficiently. kn =0 indicates that this
wslk() call is the alternate form. Slongl and slong2
point to two 80-char strings of long SLK labels (16
characters each, 8 for the top label line followed
by 8 for the bottom label line). Sshort points to a
single 80-char string of short SLK labels (8 charac­
ters each).

Outputs a null-terminated string to the command
entry /echo line, line 27 on the screen. The argu­
ments are the specified window (wn) and the char­
acter string.

Outputs a null-terminated string to the prompt
line, line 26 on the screen. The arguments are the
specified window (wn) and the character string.

Outputs a null-terminated string to the window
label line in the top window border. The argu­
ments are the specified window (wn) and the char­
acter string.

Flushes all output to the specified window. Out­
put is normally buffered until input is read from
the window. Wrefresh(=-l) refreshes the entire
screen. If the terminal is remote, the wrefresh()
call redisplays all windows known to the applica­
tion in the remote terminal.

Writes the "user line" of the window. The user
line is displayed by the wmgr process whenever it
displays a list of windows.

Moves the window's cursor to a specified row,
column within the window. Arguments are wn
and the row, column.

- 6-

TAM(3T)

wgetposO

kcodemapO

wgetcO

keypadO

(AT&T UNIX PC only) TAM(3T)

Gets the current position (row, column) of the cur­
sor in the specified window (wn). Arguments are
wn and the pointers to the row, column position
of the cursor.

When passed an 8-bit value, kcodemap{} returns a
pointer to the 7-bit escape sequence that maps
into that value.

Gets a single character from the specified window
(wn). Wgetc{} is the window equivalent of
getchar{}. The input stream from any keyboard is
translated into UNIX PC keyboard equivalents.

Determines how function keys are returned in a
wget{} call. There are three states:

flag=O sets the 7-bit mode.
Function keys return escape sequences for a
wgetc{} call.

flag=l sets the 8-bit mode.
Function keys return a single 8-bit character.

flag=2 sets the non-mapped mode.
Function keys return the code(s) generated by the
terminal used.

wsetmouseO Sets up the parameters associated with the mouse.
Wsetmouse{} also takes a pointer to an umdata
structure, which determines the report conditions
for mouse motion and/or button changes. (See the
discussion in the wz'ndow(7) manual page about
the umdata structure for specific usage.)

wreadmouseO Gets the mouse state, including the coordinates of
the mouse cursor and whether each of the three
mouse buttons is up or down. For a detailed
description of this information, see wz'ndow(7).
The information is read from the input stream, so
this routine should be called only after a mouse
code is returned by wgetc{}. The structure is
defined in sys/ mouse.h.

wprexecO This is called by the child process after a fork{}
and before an exec{} to perform the appropriate
actions for passing a window to a child process.
"Appropriate action" varies from the bit map
screen to the remote terminal. On the bit map,
wprexec{} creates a new window and passes it as
std£n, stdout, and stderr. On remote terminals,
wprexec{} prepares the screen to be taken over by
the child by flushing output and resetting tty
modes.

- 7-

TAM(3T) (AT&T UNIX PC only) TAM(3T)

FILES

wpostwaitO

wnl(wn,flag)

wiconO

'wicoff()

wtargetonO

This is called by the parent process after perform­
ing a wat"t() for a child process to reverse the
effects of wprexecO.

Turns on/off mapping of NL into CR/NL on out­
put. The default stat is on.

Displays an icon (on the bit-mapped screen) at the
specified row and column.
'T'",..no tho ,"'''''" ""ff (l·d"''nl,-C'" .f-h"", ",or"" _,.~ .. , ;:J '\...,. ...
..Lu..L.J..LU VA..&.,,", ,VV.J..J. Vl..J. \J,J1Q.o.J..J..1\...,:) Vl..1\..r Q..1vCll vvvU}llvU. uy

the icon).

Activates touch target capabilities for menu, form,
and message on the 510a terminal. The default is
off.

The command that compiles the code is

cc [flags] files -Ham -ltermcap [libraries]

For Curses compatibility calls see #defines in tam.h as well as
the following:

initscrO
nlO
nonlO
cbreakO
nocbreakO
echoO
noechoO
getchO
Il .. ~l.~~~{\
u "' ... u"'\}

attronO
attroffO
savettyO
resettyO
printwO
fixtermO
resettermO

/usr /lib/ua/keynames
/usr /lib/ua/keymap
/usr/lib/ua/kmap.s4
/usr /lib/ua/tam.a

SEE ALSO
font(4), form(3T), menu(3T), window(7), kbd(7), escape(7),
track(3T), wrastop(3T), shlib(4), message(3T).

DIAGNOSTICS
Unless otherwise specified, all functions return -1 on failure.

- 8-

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION

TMPFILE (3S)

Tmpfile creates a temporary file and returns a corresponding Fll.,E
pointer. The file will automatically be deleted when the process
using it terminates. The file is opened for update.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S).

- 1 -

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a
temporary file.

Tmpnam always generates a file name using the path-name
defined as P _tmpdir in the <stdio.h> header file. If 8 is
NULL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will des­
troy the contents of the area. If 8 is not NULL, it is assumed to be
the address of an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in <stdio.h >; tmpnam places
its result in that array and returns 8.

Tempnam allows the user to control the choice of a directory.
The argument dir points to the path-name of the directory in
which the file is to be created. If dz'r is NULL or points to a string
which is not a path-name for an appropriate directory, the path­
name defined as P _tmpdir in the <stdio.h> header file is
used. If that path-name is not accessible, /tmp will be used as a
last resort. This entire sequence can be up-staged by providing an
environment variable TMPDIR in the user's environment, whose
value is a path-name for the desired temporary-file directory.

Many applications prefer their temporary files to have certain
favorite initial letter sequences in their names. Use the pix argu­
ment for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the
temporary-file name.

Tempnam uses maUoc(3C) to get space for the constructed file
name, and returns a pointer to this area. Thus, any pointer value
returned from tempnam may serve as an argument to free (see
malloc(3C)). If tempnam cannot return the expected result for
any reason, i.e. maUoc failed, or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

These functions generate a different file name each time they are
called.

Files created using these functions and either fopen or creat are
temporary only in the sense that they reside in a directory
intended for temporary use, and their names are unique. It is the
user's responsibility to use unlz"nk (2) to remove the file when its
use is ended.

- 1 -

TMPNAM(3S) TMPNAM(3S)

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C),
tmpfile(3S).

If called more than 17,576 times in a single process, these func­
tions will start recycling previously used names.
Between the time a file name is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using these
functions or mktemp, and the fiie names are chosen so as to render
duplication by other means unlikely.

- 2 -

TRACK(3T) (AT &T UNIX PC only) TRACK(3T)

NAME
track - track mouse motion

SYNOPSIS
#include <track.h>
int track(w, trk, op, butptr, whyptr)
int w, op, *butptr, *whyptr;
track_t *trk;

DESCRIPTION
Track allows the process to define an arbitrary number of "mouse
motion rectangles" and to learn when the mouse ventures into any
of them. In addition, track monitors keyboard input and mouse
button presses, returning each as appropriate.

Each motion rectangle has an X,y address, a width and height, and
an optional mouse icon to be displayed whenever the mouse is
located in that rectangle ..

The first argument is the window descriptor. Trk is a pointer to a
track structure (see below). Op is T_BEGIN to initialize the track
operation, T_INPUT to accept mouse and keyboard input, and
T_END to terminate a track operation. These may be combined
to produce complex operations: T_BEGIN I T_INPUT will initial­
ize and begin tracking, etc. Butptr and whyptr are pointers to
return values. The int pointed to by butptr will receive the 3-bit
integer corresponding to the current mouse button state. Whyptr
points to an int which will receive the "reason" for the
return-one of MSIN, MSUP, or MSDOWN. MSIN means the
mouse has moved to a new rectangle (or the background), MSUP
and MSDOWN report mouse button changes.

The track structure controls track's operation:

typedef struct
{

char
char
char
short
short
struct icon
struct umdata
tkitem_t
tkitem_t

} track_t;

t_flags;
t_scalex;
t_scaley;
t_Iastx;
t_Iasty;
*t_bicon;
t_umdata;
*t_tkitems;
*t_curi;

/* flags * /
/* x & y scaling * /

1* last known X,y pos * /

1* background icon * /
1* save the mouse data * /
1* ptr to items * /
1* ptr to current item * /

TJlags contains either or both of MSUP and/or MSDOWN,
which enable mouse button reporting. If both flags are zero, but­
ton presses have no effect-only motion rectangle transitions wake
the process.

T_scalex and Cscaley determine the scaling factor for all the
coordinates in the track items (see below). 1,1 gives unity scaling,
allowing the application to specify pixel coordinates. Values of 0
for either scale parameter cause track to substitute the

- 1 -

TRACK(3T) (AT&T UNIX PC only) TRACK(3T)

FILES

appropriate character scale values. Thus, values of 0,0 for the
scaling parameters specify that all user-supplied coordinates are in
characters.

T_lastx and Clasty are used internally by track to record the last
known x,y position of the mouse. In particular, when track
returns to the caller, lastx and lasty will contain the position
which caused the return.

T_bicon is an optional icon to be used whenever the mouse iR
located in the background (not in any rectangle).

T_umdata is used internally by track to record the state of the
mouse parameters on T_BEGIN and to restore them on T_END.

Ctkitems points to an array of track items (rectangles) which are
described below. The list is terminated by a rectangle whose x, y,
width, and height are all zero.

T_curi is a pointer to the current track item. On call, track
assumes the mouse is located within the rectangle pointed to by
curi. On return, cur; points to the new current rectangle. A
value of a means the background. T_curi is set to 0 on
T_BEGIN.

Each track item (rectangle) has the following structure:

typedef struct
{

unsigned short
unsigned short
unsigned short
unsigned short
struct icon
int

} tkitem_t;

ti_x;
ti-y;
ti=w;
ti_h;
*tLicon;
ti_val;

1* x position * I
1* y position *1
1* width */
/* height *1
1* icon *1
1* user value *1

The first four parameters determine the location and size of the
rectangle. 0,0 is the upper-left corner. Each of these parameters
is scaled by the scaling factors.

TLicon points to an optional icon to be associated with this rec­
tangle. Whenever the mouse is located within the rectangle, this
particular icon is displayed.

TLval is a user-supplied value which is not used in the tracking
process.

lusr I include/track.h
lusr linclude/sys/window.h
lusr linclude/kcodes.h

SEE ALSO
tam(3T), window(7).

DIAGNOSTICS
Track returns a key code (see kcodes.h) which determines what
key was pressed. 'Mouse' is returned when a mouse event

- 2 -

TRACK (3T) (AT&T UNIX PC only) TRACK(3T)

occurred-the current item points to the track item in which the
mouse is located (0 means the background). The button state and
wakeup reason are also recorded. If a keyboard key is the cause of
the return, these values are not necessarily updated.

Track can also return TERR_IOCTL if a system ioctl fails, or
TERR_OK when no error occurred on a T_BEGIN or T_END
operation where no input was performed.

- 3-

TRIG (3M) TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;

DESCRIPTION
Sz"n, cos and tan return respectively the sine, cosine and tangent
of their argument, which is in radians.

Asz"n returns the arcsine of x, in the range -7r/2 to 7r/2.

Acos returns the arccosine of x, in the range 0 to 7r.

Atan returns the arctangent of x, in the range -7r/2 to 7r/2.

Atan2 returns the arctangent of y / x, in the range -7r to 7r, using
the signs of both arguments to determine the quadrant of the
return value.

DIAGNOSTICS
Sz"n, cos and tan lose accuracy when their argument is far from
zero. For arguments sufficiently large, these functions return 0
when there would otherwise be a complete loss of significance. In
this case a message indicating TLOSS error is printed on the stan­
dard error output. For less extreme arguments, a PLOSS error is
generated but no message is printed. In both cases, errno is set to
ERANGE.

Tan returns HUGE for an argument which is near an odd multi­
ple of 7r/2 when the correct value would overflow, and sets errno
to ERANGE.

Arguments of magnitude greater than 1.0 cause asz"n and acos to
return 0 and to set errno to EDOM. In addition, a message indi­
cating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

- 1 -

TSEARCH (3C) TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include < search.h >
char *tsearch ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete ((char *) key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION
tsearch, tfind, and twalk are routines for manipulating binary
search trees. They are generalized from Knuth (6.2.2) Algorithms
T and D. All comparisons are done with a user-supplied routine.
This routine is called with two arguments, the pointers to the ele­
ments being compared. It returns an integer less than, equal to,
or greater than 0, according to whether the first argument is con­
sidered less than, equal to, or greater than the second argument.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a
datum to be accessed or stored. If there is a datum in the tree
equal to *key (the value pointed to by key), a pointer to this
found datum is returned. Otherwise, *key is inserted, and and a
pointer to it returned. Only pointers are copied, so the calling
routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable
pointed to by rootp denotes an empty tree; in this case, the vari­
able will be set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a
pointer to it if found. However, if it is not found, tfind will return
a NULL pointer. The arguments for tfind are the same as for
tsearch.

Tdelete deletes a node from a binary search tree. The arguments
are the same as for tsearch. The variable pointed to by rootp
will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a
NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a
walk below that node.) Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three
arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration

- 1 -

TSEARCH (3C) TSEARCH (3C)

data type typedef enum { preorder, postorder, endorder, leaf}
VISIT; (defined in the < search. h> header file), depending on
whether this is the first, second, or third time that the node has
been visited (during a depth-first, left-to-right traversal of the
tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Simi­
larly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures contain­
ing a pointer to each string and a count of its length. It then
walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /*pointers to these are stored in the tree* /
char *string;
int length;

};
char string_space[lOOOO];
struct node nodes[500J;

/*space to store strings* /
/*nodes to store* /

struct node *root = NULL;
root*/

/*this points to the

main()
{

}
/*

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0; node_compare();

while (gets(strptr) != NULL && i++ < 500) {
j*set node* /

}

nodeptr- >string = strptr;
nodeptr- > length = strlen(strptr);
/*put node into the tree* /
(void) tsearch((char *)nodeptr, (char **)
&root,

node_compare);
/*adjust pointers so we don't overwrite
tree* /
strptr += nodeptr- > length + 1;
nodeptr++;

twalk((char *)root, print_node);

This routine compares two nodes, based on an

- 2 -

TSEARCH (3C)

SEE ALSO

*/
int

TSEARCH (3C)

alphabetical ordering of the string field.

node_com pare(node 1, node2)
char *nodel, *node2;
{

}
1*

*/
void

return strcmp(((struct node *)nodel)- > string,
((struct node *) node2)- > string;

This routine prints out a node, the
first time twalk encounters it.

print_node(node, order, level)
char **node;
VISIT order;
int level;
{

}

if (order == preorder order == leaf) {
(void)printf("string = %20s, length
%dxn",

(*((struct node
**)node))- > string,
(*((struct node
**)node))- > length);

}

bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.

A NULL pointer is returned by tfind and tdelete if rootp is NULL
on entry. If the datum is found, both tsearch and tfind return a
pointer to it. If not, tfind returns NULL, and tsearch returns a
pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than
the rootp arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in which
tree nodes are visited. Tsearch uses preorder, postorder, and
endorder to respectively refer to visiting a node before any of its
children, after its left child and before its right, and after both
children. The alternate nomenclature uses preorder, inorder, and
postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

CAVEAT
If the calling function alters the pointer to the root, results are
unpredictable.

- 3-

TTYNAME (3C) TTYNAME (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

Ttyname returns a pointer to a string containing the null­
terminated path name of the terminal device associated with file
descriptor fildes.

[satty returns 1 if fildes is associated with a terminal device, 0
otherwise.

/dev/*

DIAGNOSTICS

BUGS

Ttyname returns a NULL pointer if fildes does not describe a ter­
minal device in directory /dev.

The return value points to static data whose content is overwrit­
ten by each call.

- 1 -

TTYSLOT (3C) TTYSLOT (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the
/ etc / u tmp file. This is accomplished by actually scanning the
file /etc/inittab for the name of the terminal associated with the
standard input, the standard output, or the error output (0, 1 or
2).

/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while search­
ing for the terminal name or if none of the above file descriptors is
associated with a terminal device.

- 1 -

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
char c;
FILE *stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an
input stream. That character, c, will be returned by the next
getc call on that stream. Ungetc returns c, and leaves the file
stream unchanged.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns
EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
In order that ungetc perform correctly, a read statement must
have been performed prior to the call of the ungetc function.
Ungetc returns EOF if it can't insert the character. In the case
that stream is std£n, ungetc will allow exactly one character to be
pushed back onto the buffer without a previous read statement.

- 1 -

VPRINTF (as) VPRINTF (as)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs
argument list

SYNOPSIS
#include <stdio.h>
#include < varargs.h >

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE * stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION
Vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a
variable number of arguments, they are called with an argument
list as defined by varargs(S).

EXAMPLE
The following demonstrates the use of vfprintf to write an error
routine.

#include <stdio.h>
#inelude <varargs.h>

/*
/* error should be called like
/* error(function_name, format, argl, arg2 •••); * /
/* V ARARGS * /
void
error(v a_ali st)
/* Note that the function_name and format arguments cannot be
/* separately declared because of the definition of varargs. * /
va_del
{

va_list args;
char *fmt;

va_start(args);
/* print out name of function causing error * /
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va_arg(args, char *);
/* print out remainder of message * /
(void)vfprintf(stderr, fmt, args);
va_end(args);
(void)abort();

- 1 -

VPRINTF (3S) VPRINTF (3S)

}
SEE ALSO

printf(3S), varargs(S).

- 2 -

WIND (3T) (AT&T UNIX PC only) WIND (3T)

NAME
wind - creates and places a window

SYNOPSIS
#include < wind.h >

int
wind(type, height, width, flags, pfont)
int type, height, width;
short flags;
char "'pfont[];

DESCRIPTION
Wind creates a window that is of height by width characters and
loads the window with the fonts listed in plant. Unlike were ate ,
wind does not need specific coordinates to create a window but
creates one of three types of windows:W YOPUP (inside the
existing window), W __ SON (overlapping the existing window), or
W _NEW (a new window that tries not to overlap the existing win­
dow). The three types of windows are described in detail below.

W _POPUP makes the new window live "inside" the window
wneur. Inside is defined as completely within and centered.
Overflow goes down and to the right if possible.

W _SON makes the new window on the lower right corner if possi­
ble. The overlap is determined based on the size of the window
wneur.

W _NEW creates a window in a new part of the display, avoiding
existing windows. This is slower and should only be used where
necessary.

EXAMPLES
menu_t *m;
int height, width, windop, wn;

SEE ALSO

height = 5;
width = 10·
if (m -:- > ~_flags & M_ WINSON)

windop = W _SON;
else if (m - > m_flags & M_ WINNEW)

windop = W _NEW;
else

windop = WYOPUP;
wn = wind (windop, height, width, M_BORDFLAGS, 0);
m -> m_win = wn;

form(3T), menu(3T), tam(3T), window(7).

DIAGNOSTICS
If wind returns a positive number, the number is the window

- 1 -

WIND (3T) (AT&T UNIX PC only) WIND (3T)

BUGS

number. A negative number indicates an error, as defined in
wind.h.

Plont is currently ignored.

- 2 -

WRASTOP (3T) (AT&T UNIX PC only) WRASTOP (3T)

NAME
wrastop - pixel raster operations for bitmap displays

SYNOPSIS
#include <sys/window.h>
int wrastop(w, srebase, srewidth, dstbase, dstwidth,

srex, srey, dstx, dsty, width, height,
sreop, dstop, pattern)

int w;
unsigned short *srebase, *dstbase, ... pattern;
unsigned short srewidth, dstwidth;
unsigned short srex, srey, dstx, dsty;
char sreop, dstop;

DESCRIPTION
The wrastop routine provides user programs with direct access to
a window's pixel data. This "raster operation)) is controlled by
the arguments which include both source and destination opera­
tors:

/* rastop source operators * /
#define SRCSRC 0 /* source * /
#define SRCP AT 1 1* pattern * /
#define SRCAND 2 /* source and pattern * /
#define SRCOR 3 1* source or pattern * /
#define SRCXOR 4 1* source xor pattern * /
/* rastop destination operators * /
#define DSTSRC 0 /* srcop(src) */
#define DSTAND 1 /* srcop(src) and dst * /
#define DSTOR 2 1* srcop(src) or dst * /
#define DSTXOR 3 /* srcop(src) xor dst */
#define DSTCAM 4 /* not(srcop) and dst * /
W is the window identifier for the window to be accessed (see
tam(3T) for more information on window identifiers). The
srcbase and dstbase arguments determine the memory addresses
of the source and destination planes. Srcbase and dstbase may
point to the address of the first short of an arbitrarily-sized array
of shorts. Each row of pixels consists of srcwidth (or dstwidth)
number of bytes from this array. Thus, the first pixel row exists
from srcbase to ((char *)srcbase) + srcwidth. Within each short,
the least significant bit is the left-most when displayed on the
screen.

Alternatively, srcbase and/or dstbase may contain 0, in which
case the source or destination is assumed to be the window
specified by the first arg to the call. The caller need not supply
any value for the srcwidth if srcbase is 0, nor dstwidth if dstbase
is zero. It is therefore possible to perform raster operations from
user space to user space, user space to screen, screen to user space,
or screen to screen.

The srcx, srcy, dstx, and dsty parameters contain pixel addresses
within the specified pixel plane. 0,0 is always the upper-left-hand
corner of the display. Note that raster operations are completely

- 1 -

WRASTOP (aT) (AT&T UNIX PC only) WRASTOP (3T)

FILES

aware of the problems associated with overlapping rectangles: the
memory operations will be done front to back or back to front as
necessary.

The width and he£ght parameters give the rectangle's width and
height in pixels.

The srcop (source operation) and dstop (destination operation)
fields together determine the algorithm which will be applied to
the Lwo rectangies. The basic behavior oi rastop conforms to the
following vector description:

dst = dstop(srcop(src,pattern))

where srcop and dstop are vector functions. There are five source
operations. SRCSRC is the identity function whose value is the
unmodified source rectangle itself. SRCP AT's value is that of the
"pattern" (see below) and bears no relationship to the source.
SRCOR is the inclusive OR of the source and the pattern;
SRCAND, the AND; SRCXOR, the exclusive OR.

DSTSRC is the identity function, returning the result of the
source operation unchanged. DSTAND is the AND of the destina­
tion with the result of the source, DSTOR is the inclusive OR, and
DSRXOR the exclusive OR. DSTCAM AND's the one's­
complement of the source operation into the destination.
DSTCAM is the inverse of DSTOR: where DSTOR would turn on
pixels, DSTCAM will turn them off.

The pattern field is required for SRCPAT, SRCAND, SRCOR,
and SRCXOR operations only. It points to an array of 16 X 16
pixels arranged as 16 consecutive shorts. As with source and des­
tination rectangles, the LSB of the first short in the vector
corresponds to the upper-left-hand pixel of the pattern. Patterns
are automatically aligned with the destination.

In addition to the wrastop function, there are four pre-defined pat­
terns: patblack (all zeros), patwhite (all ones), patgray (half­
tone), and patltgray (light gray). To reference these patterns,
the calling program should define these patterns as external
unsigned short arrays (unsigned short patblack[]).

If the pattern field is set to 0, the operation will take place as if
patblack was specified.

Note that wrastop always refreshes the specified window before
executing to force any character operations to occur in correct
time order.

jusr jincludejsysjwindow.h

SEE ALSO
tam(3T), window(7).

DIAGNOSTICS
Wrastop returns 0 on success, -Ion failure with errno set to the
error number. Any attempt to issue a wrastop call on a non­
bitmap display will result in a return of -1 with errno left to its
previous value.

- 2 -

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct
declarations for the file formats are given where applicable. Usu­
ally, these structures can be found in the directories
/usr/include or /usr/include/sys.

Files on the UNIX PC cannot be larger than 1 megabyte in size.

References of the type name (lM) refer to entries found in Section
1M of the UNIX PC UNIX System User's Manual.

- 1 -

A.OUT(4) A.OUT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include < a.out.h >

DESCRIPTION
The file name a.out is the output file from the assembler as(l)
and the link editor ld(1). Both programs will make a. out execut­
able if there were no errors in assembling or linking and no
unresolved external references.

A common object file consists of a file header, a UNIX system
header, a table of section headers, relocation information,
(optional) line numbers, a symbol table, and a string table. The
order is given below.

File header.
UNIX header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and string table)
may be missing if the program was linked with the -8 option of
Id(l) or if the symbol table and relocation bits were removed by
str£p(l). Also note that the relocation information will be absent
if there were no unresolved external references after linking. The
string table exists only if the symbol table contains symbols with
names longer than eight characters.

The sizes of each section (contained in the header, discussed
below) are in bytes and are even.

When an a.out file is loaded into memory for execution, three log­
ical segments are set up: the text segment, the data segment (ini­
tialized data followed by uninitialized, the latter actually being
initialized to all O's), and a stack. The text segment begins at
location OxOOOO in the core image. The header is never loaded
except for magic 0413 files created with the -F option of Id(l). If
the magic number (the first field in the operating system header)
is 407 (octal), it indicates that the text segment is not to be
write-protected or shared, so the data segment will be contiguous
with the text segment. If the magic number is 410 (octal), the

- 1 -

A.OUT(4) A.OUT(4)

data segment and the text segment are not writable by the pro­
gram; if other processes are executing the same a.out file, they
will share a single text segment.

Magic number 413 (octal) is the same as 410 (octal), except that
413 (octal) permits demand paging. Both the -z and -F options
of the loader ld(1) create a.out files with magic numbers 0413. If
the -z option is used, both the text and data sections of the file
are on 1024-byte boundaries. If the -F option is used, the text
and data sections oj the fiie are contiguous. Loadmg a single
4096-byte page into memory requires 4 transfers of 1024 bytes
each for -z, and typically one transfer of 4096 bytes for -F.
Thus a.out files created with -F can load faster and require less
disk space.

The stack begins at the end of memory and grows towards lower
addresses. The stack is automatically extended as required. The
data segment is extended only as requested by the brk(2) system
call.

The value of a word in the text or data portions that is not a
reference to an undefined external symbol is exactly the value that
will appear in memory when the file is executed. If a word in the
text involves a reference to an undefined external symbol, the
storage class of the symbol-table entry for that word will be
marked as an "external symbol/' and the section number will be
set to O. When the file is processed by the link editor and the
external symbol becomes defined, the value of the symbol will be
added to the word in the file.

File Header
The format of the filehdr header is:

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Cmagic;
Cnscns;
Ctimdat;
Csymptr;
Cnsyms;
Copthdr;
Cflags;

/* magic number */
/* number of sections */
/ * time and date stamp * /
/ * file ptr to sym tab * /
/* # symtab entries * /
/ * sizeof(opt hdr) * /
/* flags * /

UNIX System Header
The format of the UNIX system header is:

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

1* magic number *1
1 * version stamp *1
1* text size in bytes, padded *1
1* initialized data (.data) *1
1 * uninitialized data (. bss) * 1
1* entry point *1
1 * base of text used for this file * 1
1 * base of data used for this file *1

- 2 -

A.OUT(4) A.OUT (4)

} AOUTHDR;

Section Header
The format of the section header is:

struct scnhdr
{

};

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];/* section name */
s_paddr; /* physical address * /
s_vaddr; /* virtual address * /
s_size; /* section size */
s_scnptr; /* file ptr to raw data * /
s_relptr; /* file ptr to relocation * /
s_lnnoptr; /* file ptr to line numbers * /
s_nreloc; /* # reloc entries * /
s_nlnno; /* # line number entries */
s_flags; /* flags */

Relocation
Object files have one relocation entry for each relocatable refer­
ence in the text or data. If relocation information is present, it
will be in the following format:

struct reloc
{

long r_vaddr; /* (virtual) address of reference */
long r_symndx; / * index into symbol table * /
short r_type; /* relocation type */

};
The start of the relocation information is 8_relptr from the Section
Header. If there is no relocation information, 8_relptr is o.

Symbol Table
The format of the symbol table header is:

#define SYMNMLEN 8
#define FlLNMLEN 14
#define SYMESZ 18 j* the size of a SYMENT * /

struct syment
{

union /* get a symbol name * /
{

char n_name[SYMNMLEN];/* name of symbol */
struct
{

long
long

}_n_n;
char

}_n;
unsigned long
short
unsigned short
char

_n_zeroes;
_n_offset;

/* ==OL if in string table */
/ * location in string table * /

* _n_nptr[2]; /* allows overlaying * /

n_value;
n_scnum;
n_type;
n_sclass;

- 3-

/* value of symbol */
/* section number */
/ * type and derived type * /
/ * storage class * /

A.OUT(4)

char
};

#define
#define
#define
#define

n_name
n_zeroes
n_offset
n_nptr

A.OUT(4)

n_numaux; /* number of aux entries */

_no_n_name
_n o_n_n o_n_zeroes
_n o_n_no_n_offset
_no_n_nptr[l]

Some symbols require more information than a single entry; they
are followed by auxz"lt"ary entries that are the same size as a sym­
bol entry. The format follows:

union auxent {
struct {

};

long x_tagndx;
union {

struct {
unsigned short x_Inno;
unsigned short x_size;

} x_Insz;
long x_fsize;

} x_misc;
union {

struct {
long x_Innoptr;
long x_endndx;

} x_fcn;
struct {

unsigned short x_dimen[DIMNUM];
} x arv:

} x_f ~nary.; ~ ,
unsigned short x_tvndx;

} x_sym;

struct {
char x_fname[FaNMLEN];

} x_file;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;

Indexes of symbol table entries begin at zero. The start of the
symbol table is f_symptr (from the file header) bytes from the
beginning of the file. If the symbol table is stripped, f_symptr is
o. The string table (if one exists) begins at f_symptr + (J_nsyms

- 4-

A.OUT(4) A.OUT(4)

SYSEMZ) bytes from the beginning of the file.

SEE ALSO
as(l), cc(1), Id(1), brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4),
scnhdr(4), syms(4).

- 5 -

ADF (4) (AT&T UNIX PC only) ADF(4)

NAME
adf - application data format

DESCRIPTION
The Application Data Format (ADF) is a file format designed to
support data interchange between different applications. ADF is
an ASCII format with predefined keywords and tokens.

ADF consists of five basic data types: file operations, text,
numeric, graphic, and spreadsheet, along with their subtypes.
In addition to the basic data types, there are higher order data
types, such as tuples, tables, and groups, which are collections
of basic data types.

Each data type starts with a keyword, which is followed by a
number of arguments depending on the keyword. Each keyword
always appears at the beginning of a line, and is always ter­
minated with white space (ASCII tab or space) or a new line char­
acter. All keywords accept either type of terminator. White
space at the beginning of the line is ignored.

In some cases, the arguments of keywords are also keyed, and in
this case the reserved words are used to introduce argument values
which are referred to as tokens. Tokens always appear at the
beginning of the line, and are terminated with white space or new
line characters.

Keywords that are followed by arguments of indefinite length or
number use braces to delimit the arguments that belong to the
keyword. These braces may be nested, and the matching end
brace terminates the keyword definition.

Any line beginning with the pound sign (#) character is ignored.
In this way comments may be embedded in an ADF file. An
exception to this rule is in the text data type, where a pound sign
may end up at the beginning of a line.

All lines are required to be less than 80 characters in length.

The ADF file begins with the ADF keyword, which identifies it as
an ADF file, followed by the VERSION keyword and the APPLI­
CATION keyword. The initial version of ADF is VERSION 1.0.
The APPLICATION keyword identifies the source of the ADF file.

Following this header are an arbitrary number of data items, and
the file ends with the EOF keyword.

File Operations
ADF supports the moving and copying of entire files and file fold­
ers.

The FILOP data type has the following format:

FILOP <file operation> {
SOURCE <first source file>
NAME < first destination name>

SOURCE < last source file>

- 1 -

ADF(4)

NAME
}

(AT&T UNIX PC only) ADF(4)

< last destination name>

The file operations which are currently supported are COpy and
MOVE.

There is one SOURCE keyword for each file which is to be copied
or moved. The argument to the SOURCE keyword is the full
path name of the file or folder to be copied or moved.

The NAME keyword is optional and is neceRSHTY if the name of
the destination file is different than the name of the source file.
The NAME keyword is especially helpful for applications which
copy files into a temporary directory before they are finally copied
or moved to their ultimate destination.

Here is an example of an ADF file which is used to copy attach­
ments for Electronic Mail:

VERSION 1.0
APPLICATION Electronic Mail
FILOP MOVE {

EOF

SOURCE /tmp/EMAAAa00273
NAME homedirl
SOURCE /tmp/EMBAAa00273
NAME insfmla:S
SOURCE /tmp/EMCAAa00273
NAME movepasswd
SOURCE /tmp/EMDAAa00273
NAME relativeatt
SOlJRCE /tmpjEMEAAa00273
NAME addr.c
}

Text Data Types
The TEXT keyword takes a single argument, an ASCII coded text
string. White space following the TEXT keyword on the same
line is ignored. The text data type is a stream of bytes, together
with associated attribute and font information. Non-ASCII charac­
ters and attribute information are embedded in the text string via
the backslash character (\). The text string is terminated with
the \EOT\ code.

All ASCII characters except backslash (\) require no interpretation.
The backslash character introduces one of the following codes:

Code

\\
\ <decimal #> \

Meaning

Converts to a single backslash
Inserts a byte of the specified
value. The legal range is 0 -
239.

- 2 -

ADF(4) (AT&T UNIX PC only)

\ <new line> \

\IND\
\CEN\
\RB\
\HS\
\OH\
\lllI\
\HI\
\BB\
\EB\
\PN\
\EOP\
\HP\
\BF\
\EF\
\RS\
\EOT\
\UL\
\WU\
\DU\
\US\
\BL\
\BS\
\MI\
\MIS\
\MD\
\MDS\
\SUP\
\SUS\
\SUB\
\SBS\
\FONT:<NAME> \

\CSIZE:<n> \

\COLOR:<n> \

Nothing. Used to embed new
lines for formatting purposes.
Un-escaped new lines are only
used for paragraph ends.
Indent character
Center character
Required backspace
Hard space
Optional hyphen
Hard hyphen
Hanging indent
Begin block (keep block)
End block
Page number
End of page
Hard page end
Begin field name
End field name
Record separator
End of text string
Underline start
Word underline start
Double underline start
Underline stop
Bold start
Bold stop
Mark insert
Mark insert stop
Mark delete (strike-thru)
Mark delete stop
Superscript
Superscript stop
Subscript
Subscript stop
Select font <NAME>
(predefined)
Select character size < n >
(point size)
Select color <n> (1-8)

ADF(4)

A font is a mapping of the text stream byte values onto display­
able characters. The form that this mapping takes depends on the
output devices supported by the particular system. The font also
contains pitch information and the widths of the individual char­
acters, in the case of a proportionally spaced font.

For transfers between applications running on different machines,
the font information for all of the referenced fonts must be
included in the ADF file.

Here are some sample text data items:

TEXT Short string\EOT\

- 3-

ADF(4) (AT&T UNIX PC only) ADF(4)

TEXT
This is a sample paragraph. Notice that \UL\all\US\ \
of the new lines are escaped except for the one at the \
end of the paragraph, and \BL\all\BS\ of the spaces \
between words are present.
\EOT\

The LABEL data type is a subtype of the text data type. It has
the following format:

LABEL <x coordinate> <y coordinate> {
LABELORIGIN < label origin number>

<optional keywords>

TEXT
}

<text> \EOT\

Coordinates are floating point numbers in the range 0-100. The
label origin number is an integer between 0 and 8 (inclusive), and
refers to the justification of the label.

The optional keywords are used to define attributes of particular
types of LABELs, such as graphic LABELs or spreadsheet
LABELs, and are described under the appropriate data types.

The TEXT data is a watered down version of the text data type
previously described. The special codes defined for the text data
type are all legal, but are mostly ignored.

Numeric Data Types
The following numeric data types are defined:

Keyword

INT
FLOAT
TIME

DURATION

Meaning

Integer
Floating point number
Year/Month/Day or
Hour/Minute /Second
Hours:Minutes

Optionally following the keyword are the following tokens:

Token

JU <x>

Meaning

Justification mode.
<x> = L, R, C, or D
for left, right, center, or
decimal justify.

- 4-

ADF(4) (AT&T UNIX PC only)

FORMAT <y> Display format, where
<y> = I, F, E, M, D,
or T for integer, floating,
exponential (scientific
notation), money, date,
or time. F is followed
by the number of digits
to the left and right of
the decimal point, e.g.
F3.2.

ADF (4)

Finally there is the number, coded as an ASCII decimal string,
optionally using an exponential notation.

A series of numbers, separated by white space and terminated by
an unescaped new line character, may also follow at this point.

Here are some sample numeric data items:

INT 25

INT -37 43 376 8892\
96 248 -6230 7185

FLOAT
JUD
FORMAT F7.3

29.451 0.675E5 4

DURATION 1:07

Graphic Data Types
The basic graphic data types are OBJECTs and LABELs. The
LABEL data type is a graphical incarnation of the LABEL data
type previously described, while the OBJECT data type is a col­
lection of lines, rectangles, and text that makes up a graphics
object (a bar chart, for example).

The graphic LABEL data type has the following format:

LABEL <x coordinate>
LABELORIGIN
CSIZE
FONT
COLOR
STYLE
TEXT
}

<y coordinate> {
< label origin number>
< point size>

< color number>
<style name>
<text> \EOT\

The tokens following the LABEL keyword must all be specified
exactly once for each LABEL. The label origz'n number is an
integer between 0 and 8 (inclusive), and refers to the justification
of the label within its box. The font name must be the name of a
defined system font. The color number is an integer between 1
and 8 (inclusive).

- 5 -

ADF(4) (AT&T UNIX PC only) ADF(4)

The OBJECT data type has the following format:

OBJECT <x scale> <y scale> <x translation> <y transla-
tion> {

DRAWING MODE
LINETYPE
MOVE
DRAW
RECTANGLE

POLYGON

LABELORIGIN
CSIZE
FONT
COLOR
STYLE
TEXT
}

<vector drawing mode>
< line drawing pattern>
<x coordinate> <y coordinate>
<x coordinate> <y coordinate>
<xlow> <ylow> <xhigh>
<yhigh> <pattern>
<n><x[O]><y[O]> ...
<x[n]> <y[nl> <pattern>
<label origin number>
<point size>

<color number>
<style name>
<text> \EOT\

The OBJECT data type can (and typically does) contain multiple
instances of the above tokens. A single OBJECT, like a bar chart
or a pie chart, will contain lots of lines, rectangles, polygons, and
text fragments. The matching end brace terminates the object
definition.

The tokens that set attributes (e.g. DRA WINGMODE or FONT)
affect subsequently defined tokens until overridden by another
instance of the attribute setting token. If all of the text in a given
object is of the same COLOR, ior exampie, the color only needs to
be specified once.

Coordinates are again floating point numbers in the range 0-100.
X scale and y scale are the scaling factors in the x and y dimen­
sions for the object (floating point numbers in the range 0-1). X
translatz"on and y translation are offsets from (0,0) for the object,
also in the range 0-100.

Vector drawing mode and lt'ne drawing pattern are small positive
integers. Pattern (in RECTANGLE and POLYGON) is an integer
for the fill pattern, and n (in POLYGON) is the number of ver­
tices of the polygon.

Spreadsheet Data Types
The basic spreadsheet data types are TEXTs, LABELs, VALUEs,
and FORMULAs. The TEXT data type is a watered down ver­
sion of the text data type previously described. The LABEL data
type is a spreadsheet incarnation of the LABEL data type previ­
ously described. The VALUE data type is a spreadsheet version
of the FLOAT data type. The FORMULA data type has all of
the attributes of the FLOAT data type, but in addition it has the
text of a formula as one of its attributes.

The TEXT data type has the following format:

TEXT <text> \EOT\

- 6 -

ADF(4) (AT&T UNIX PC only) ADF(4)

The special codes defined for the text data type are all legal, but
are mostly ignored.

The LABEL data type has the following format:

LABEL <x coordinate>
LABELORIGIN
REPEATING
NAME
LOCK
INVISIBLE
TEXT
}

< y coordinate> {
<label origin number>

<name>\EOT\

<text> \EOT\

The tokens following the LABEL keyword must all be specified
exactly once for each LABEL. The only required token is the
TEXT token. The label origin number is an integer equal to 1, 4,
or 7, and describes the justification of the label. Left justified
labels use 1; center justified labels use 4; and right justified labels
use 7 as their label origin number. If no LABELORIGIN keyword
is present, the label is assumed to be left justified. A repeating
label is identified by including the REPEATING keyword. The
NAME token is used to specify a name which may contain up to
15 characters. The LOCK keyword is used to specify the local
lock status of the label. If no LOCK keyword is present, the lock
status is determined by the global lock status. The INVISIBLE
keyword is used to indicate a label which is invisible (non­
displaying). The TEXT token identifies a watered down version
of the text data type previously described. The special codes
defined for the text data type are all legal, but are mostly
ignored.

The VALUE data type has the following format:

VALUE <x coordinate> <y coordinate> {
NAME <name> \EOT\
LOCK
INVISIBLE
FORMAT < format type>
DECIMALS <number of decimal places>
<integer or floating point number>
}

The tokens following the VALUE keyword must all be specified
exactly once for each VALUE. The only required token is the
integer or floating point number token. The NAME token is used
to specify a name which may contain up to 15 characters. The
LOCK keyword is used to specify the local lock status of the
value. If no LOCK keyword is present, the lock status is deter­
mined by the global lock status. The INVISIBLE keyword is used
to indicate a value which is invisible (non-displaying). The FOR­
MAT token identifies one of the following formats:

- 7 -

ADF(4) (AT&T UNIX PC only) ADF(4)

Format Meaning

Comma
Dollars and Cents

Financial
Fixed
Percent
Scientific

Fixed format with commas.
Positive numbers are preceded with
dollar sign. Negative numbers are
enclosed· in parentheses. Uses com­
mas.
Negative numbers are in parentheses.
Fixed format without commas.
Per cent.
Scientific notation.

If no FORMAT token is present, the format is determined by the
global format. The DECIMALS token specifies the number of
characters to be displayed following the decimal point. If no
DECIMALS token is present, the number of decimal places is
determined by the global decimal places.

The FORMULA data type has the following format:

FORMULA <x coordinate> <y coordinate> {
NAME <name> \EOT\
LOCK
INVISIBLE
FORMAT <format type>
DECIMALS <number of decimal places>
TEXT < text> \EOT\
< integer or floating point number>
}

The tokens following the FORMULA keyword must all be
specified exactly once for each FORMULA. The only required
tokens are z"nteger or jioat£ng poz"nt numb er and TEXT. With the
exception of the TEXT token, a FORMULA has all of the same
tokens that a VALUE has.

The TEXT token is used to specify the text of the formula. The
exact syntax of formula text is determined by the FORMULA­
TYPE keyword in the TABLEDEF data type. Applications which
are able to understand the text of a formula should parse the for­
mula, and then store the formula in their own internal format.
The value of the formula should be determined by having the
application evaluate the formula, not by the number in £nteger or
fioat£ng poz"nt number. Applications which do not understand the
text of a formula should ignore the formula text and treat this
data type like a VALUE data type.

Compound Data Types
The data types in this section are composed of lists of the already
defined basic data types. The following compound data types are
defined:

- 8-

ADF (4) (AT&T UNIX PC only)

Keyword Meaning

SCHEMA

TUPLE

Define fields for the TUPLE data
type
A collection of data items in the
same form as a preceding
SCHEMA

TABLEDEF Table layout definition
TABLE A rectangular array of data items
GROUP A collection of graphics objects

ADF(4)

The SCHEMA keyword is followed by a series of FIELDn tokens,
one for each field being defined. Following each FIELDn token are
NAME, TYPE, and SIZE tokens. These tokens are optional
except for the TYPE token, which is required. For example:

Keyword/Token

SCHEMA {
FIELDl

NAME <a>

TYPE <t>

SIZE <n>

FIELD2

}

Meaning

Start definition for field one
<a> is an ASCII text
string which is the field
name
< t > is the data type of
the field. Must be one of
the previously defined basic
data types.
< n > is the field length in
bytes
Start definition for field two

The TUPLE keyword is followed by a series of arguments, which
are data items. The number of data items following TUPLE is
the same as the number of fields defined in the preceding
SCHEMA. Numeric data items can be typed in without their key­
word, but other data items (text in particular) must include their
keyword. The matching end brace terminates the TUPLE. The
following is a TUPLE with one text field and two numeric fields:

TUPLE {
TEXT Sample string \EOT\
2543.671
}

The TABLEDEF keyword takes two arguments, the width and
height of the table. It is optionally followed by a series of tokens
which provide default information for the rows and columns of the
table. It also contains information necessary to parse the formulas
of the table.

- 9 -

ADF(4) (AT&T UNIX PC only) ADF(4)

The TABLEDEF data type has the following format:

TABLEDEF <width> <height> {
COORDINATES <absolute column> <absolute row>
GLOBALWIDTH <width>
GLOBALFORMAT <format type>
GLOBALDECMLS <number of decimal places>
GLOBALLOCK
FORMULATYPE <formula type>
WIDTH <relative column> <width>

WIDTH
}

<relative column> <width>

All tokens following the TABLEDEF keyword, except the WIDTH
token, must be specified exactly once. There are no required
tokens. The COORDINATES token specifies the location of the
upper left corner of the table being moved or copied relative to
the (perhaps larger) table from which it was moved or copied.
The GLOBAL WIDTH token specifies the default width of each
cell of the table. The available formats are the same as those dis­
cussed in the section on the VALUE data type. The GLOBAL­
DECMLS token specifies the default number of decimal places.
The GLOBALLOCK token is u:?ed to specify the default lock
status of each cell of the table. If this token is not present, it is
assumed that cells are not locked. The FORMUT ,ATYPE t.oken
specifies the syntax of the formula text. Possible values for this
token are Lotus, Multiplan, and Supercomp20. The WIDTH
token is used to make a column have a different width than the
default width. The column number is a relative column number
and is 0 based so that WIDTH 0 7 means that the first column
of the table has a width of 7.

The following is an example of a TABLEDEF data type:

TABLEDEF 7 7 {
COORDINATES 00
GLOBALWIDTH 8
GLOBALDECMLSO
FORMULASTYLE Lotus
WIDTH 111
WIDTH 5 9
}

The TABLE keyword is used to introduce a rectangular array of
data items in the previously defined table format. The number of
data items is the same as the number of columns times the
number or rows in the table. Numeric data items can be entered
without their keywords, but other data items (text in particular)

- 10 -

ADF(4) (AT&T UNIX PC only) ADF(4)

must include their keywords. Coordinates can be included with
both numeric and text data items to output a sparce matrix. The
matching end brace terminates the table.

The following is a sample table:

TABLE {
TEXT \EOT\
LABEL 11 {

LABELORIGIN 1
TEXT

Year\EOT\
}
2532 1774
FLOAT 61 {

3.1415975
}

NAME pi\EOT\
LOCK
INVISIBLE
FORMAT Scientific
DECIMALS 4

FORMULA 71 {
TEXT SUM(E4 + D5)\EOT\
FORMAT Financial
DECIMALS 0

1266.666654
}

The GROUP keyword introduces a collection of graphic entities
(OBJECTs and LABELs). It is used as follows:

GROUP {
OBJECT ... {

}
LABEL ... {

}
}

The matching end brace terminates the group.

Formatting Data Types
The data types in this section are used to specify general format­
ting characteristics of text. The following formatting data types
are defined:

- 11 -

ADF(4) (AT&T UNIX PC only) ADF (4)

Keyword Meaning

PAGE Define page layout
PARAGRAPH Define paragraph formatting

The PAGE keyword is used to define a page layout. The attri­
butes of the page that can be set using this keyword are the page
size, margins, and header and footer text. These characteristics
can be associated with all pages, this page only, even numbered
pages, or odd numbered pages.

The following tokens can follow the PAGE keyword, up to the
matching end brace:

Token

EVEN

ODD

FIRST

HEIGHT <n>
WIDTH <n>
TM <n>
BM <n>

OFFSET <n>

PITCH <n>

PN <n>
HEADER

FOOTER

Meaning

The following tokens apply to even
num bered pages
The following tokens apply to odd
numbered pages
The following tokens apply to the
current page only
<n> is the paper height (in 240ths)
<n> is the paper width (in 240ths)
< n > is the top margin (in 240ths)
<n> is the bottom margin (in
240ths)
<n> is the offset to the left margin
{;~ ()AA~1..~\
\ ill .:.'"t.Vl.Jlli:»

<n> is the horizontal spacing (in
240ths-O is proportional)
<n> is the initial page number
This token is followed by data
items, up to a matching end brace,
which constitute the header
This token is followed by data
items, up to a matching end brace,
which constitute the header

The PARAGRAPH keyword is used to set paragraph formatting
characteristics. The attributes of the paragraph that can be set
using this keyword are the left and right text margins, the line
spacing, paragraph justification mode, and tab stops.

The following tokens can follow the PARAGRAPH keyword:

- 12 -

ADF(4) (AT&T UNIX PC only)

Token Meaning

MARGIN <I> <r> <I> and <r> are the
left and right margins
(in columns).

JU <x> Justification mode.
<x> = L, R, C, or J
for left, right, center, or
full (both left and right)
justify.

LS <n> <n> is the interline
spacing (in 240ths).

TAB <n> <x> <n> is the column
number of the tab stop,
and <x> is the tab
type (L, R, C, D, or P
for left, right, center,
decimal align, or period

SEE ALSO
paste(3T).

leader). Multiple tab
stops can follow,
separated by commas,
terminated with an un­
escaped new line.

- 13 -

ADF (4)

AR(4) AR(4)

NAME
ar - common archive file format

DESCRIPTION
The archive command ar(l) is used to combine several files into
one. Archives are used mainly as libraries to be searched by the
link editor ld (1).

Each archive begins with the archive magic string.

#define ARMAG
#define SARMAG 8

"!<arch> nil /* magic string* /
/*length of magic string* /

Each archive which contains common object files (see a.out(4))
includes an archive symbol table. This symbol table is used by
the link editor ld(l) to determine which archive members must be
loaded during the link edit process. The archive symbol table (if
it exists) is always the first file in the archive (but is never listed)
and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members.
Each file member is preceded by a file member header which is of
the following format:

#define ARFMAG '" n" /*header trailer string* /

struct ar_hdr /*file member header* /
{

char ar_name[16]; /*' /' terminated file member name * /
char ar_date[12]; /* file member date * /
char ar_uid[6]; /* file member user identification* /
char ar-sid[6]; /* file member group identification * /
char ar_mode[8]; /* file member mode (octal)* /
char ar_size[lO]; /* file member size * /
char ar_fmag(2); /* header trailer string * /

};

All information in the file member headers is in printable ASCII.
The numeric information contained in the headers is stored as
decimal numbers (except for ar_mode which is in octal). Thus, if
the archive contains printable files, the archive itself is printable.

The ar_name field is blank-padded and slash U) terminated. The
ar _date field is the modification date of the file at the time of its
insertion into the archive. Common format archives can be
moved from system to system as long as the portable archive com­
mand ar(1) is used.

Each archive file member begins on an even byte boundary; a
newline is inserted between files if necessary. Nevertheless the size
given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a
zero length name (i.e., ar_name[O] =='/'). The contents of this
file are as follows:

- 1 -

AR(4)

•
•

•

AR(4)

The number of symbols. Length: 4 bytes.

The array of offsets into the archive file. Length: 4 bytes
* "the number of symbols.))

The name string table. Length: ar_sz"ze - (4 bytes * ("the
number of symbols)) + 1));

The number of symbols and the array of offsets are managed with
sgetl and sputl. The string ta.ble contains exactly as many null ter­
minated strings as there are elements in the offsets array, Each
offset from the array is associated with the corresponding name
from the string table (in order). The names in the string table are
all the defined global symbols found in the common object files in
the archive. Each offset is the location of the archive header for
the associated symbol.

SEE ALSO

BUGS

ar(1), Id(1), strip(1), sputl(3X), a.out(4).

Strip (1) will remove all archive symbol entries from the header.
The archive symbol entries must be restored via the ts option of
the ar(1) command before the archive can be used with the link
editor ld(1).

- 2 -

CHECKLIST (4) CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory / etc and contains a list of at most
15 special file names. Each spec£al file name is contained on a
separate line and corresponds to a file system. Each file system
will then be automatically processed by the jsck(IM) command.

SEE ALSO
fsck(IM).

- 1 -

CORE (4) CORE (4)

NAME
core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of
various errors occur. See signal(2) for the list of reasons; the most
common are memory violations, illegal instructions, bus errors,
and user-generated quit signals. The core image is called core
and is written in the process's working directory (provided it can
be; normal access controls apply). A process with an effective user
ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per­
user data for the process, including the registers as they were at
the time of the fault. The size of this section depends on the
parameter usize, which is defined in
/usr/include/sys/param.h. The remainder represents the
actual contents of the user's core area when the core image was
written. If the text segment is read-only and shared, or separated
from data space, it is not dumped.

The format of the information in the first section is described by
the user structure of the system, defined in
/usr/include/sys/user.h. The important stuff not detailed
therein is the locations of the registers, which are outlined in
/ usr /include/sys/reg.h.

SEE ALSO
sdb(l), setuid(2), signal(2).

- 1 -

CPIO (4:) CPIO (4:)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(l) is not used,
is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h~id;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];

When the -c option is used, the header information is described
by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% 1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h~id, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.hJlesize, respectively. The contents of each file are recorded
in an element of the array of varying length structures, archt"ve,
together with other items describing the file. Every instance of
h_magic contains the COi1stant 070707 (octal). The items h...;.dev
through h_mtime have meanings explained in stat(2). The length
of the null-terminated path name h_name, including the null byte,
is given by h_namesize.

The last record of the archt"ve always contains the name
TRAILER!!!. Special files, directories, and the trailer are recorded
with hJlesize equal to zero.

SEE ALSO
cpio(l), find(l), stat(2).

- 1 -

DIR (4) DIR (4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user
may write into a directory. The fact that a file is a directory is
indicated by a bit in the flag word of its i-node entry (see /8(4)).
The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define OIRSIZ 14
#endif
struct direct
{

ino_t d_ino;
char d_name[DIRSIZ];

};
By convention, the first two entries in each directory are for. and
••. The first is an entry for the directory itself. The second is for
the parent directory. The meaning of •• is modified for the root
directory of the master file system; there is no parent, so •• has
the same meaning as •.

SEE ALSO
fs(4).

- 1 -

FILEHDR(4) (not on PDP-l1) FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The fol­
lowing C struct declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Cmagic;
Cnscns;
Ctimdat;
Csymptr;
Cnsyms;
Copthdr;
Cflags;

/ * magic number * /
/ * n urn ber of sections * /
/* time & date stamp */
/* file ptr to symtab */
/* # symtab entries */
/ * sizeof(opt hdr) * /
/* flags */

F _symptr is the byte offset into the file at which the symbol table
can be found. Its value can be used as the offset in fseek(3S) to
position an I/0 stream to the symbol table. The UNIX optional
header is always 36 bytes. The valid magic numbers are given
below:

#define N3BMAGIC
#define NTVMAGIC

0550 / * 3B20S * /
0551 /* 3B20S */

#define V AXWRMAGIC 0570
#define V AXROMAGIC 0575

/* VAX writable text segments */
/ * VAX readonly sharable text * /
1* segments * /

The value in f_timdat is obtained from the time(2) system call.
Flag bits currently defined are:

#define F _RELFLG 00001 /* relocation entries stripped * /
#define F _EXEC 00002 /* file is executable * /
#define F _LNNO 00004 /* line numbers stripped * /
#define F _LSYMS 00010 /* local symbols stripped */
#define F_MINMAL 00020 /* minimal object file */
#define F_UPDATE 00040 /* update file, ogen produced */
#define F _SWABD 00100 /* file is "pre-swabbed" */
#define F -AR16WR 00200 /* 16 bit DEC host * /
#define F -AR32WR 00400 /* 32 bit DEC host * /
#define F-AR32W 01000 /* non-DEC host */
#define F_PATCH 02000 /* "patch" list in opt hdr */

SEE ALSO
time(2), fseek(3S), a.out(4).

- 1 -

FONT (4) (AT&T UNIX PC only) FONT (4)

NAME
font - font file format

DESCRIPTION
A font is a collection of 96 variably-sized graphics. A font exists
first on disk as a "font file." Font files are loaded into the kernel
via the WIOCLFONT (see window(7)) or SYSL_LFONT (see sys­
local(2)) ,·octl. Each font file has three sections: first, a header
containing information about the font as a whole; second, a 96-
entry table describing each of up to 96 characters in the font; and
third, a variable number of "minirasters," each an array of 16-bit
words containing the pixel definition of each character. The font
file format is given below:

#define FMAGIC 0616
#define FNTSIZE 96

struct fntdef
{

};

long
unsigned char
char
char
char
char
struct fcdef
unsigned short

1* font magic number * /
1* size of a font * /

ff_magic;
ff_flags;
ff_hs;
ff_vs;
ff_baseline;
fCdummy[26];
ff_fc[FNTSIZE];
ff_raster;

1* magic number * /
/* flags * /
1* hor spacing * /
1* ver spacing * /
/* baseline * /
/* padding * /
/* char defs * /
/* minirasters * /

struct fcdef 1* font character definition * /
{

};

char
char
char
char
char
char
short

fc_hs;
fc_vs;
fc_ha;
fc_va;
fc_hi;
fc_vi;
fc_mr;

1* horizontal size in bits * /
1* vertical size * /
/* horizontal adjust (signed) * /
1* vertical adj ust (signed) * /
1* horizontal increment * /
1* vertical increment * /
1* relative mini-raster pointer * /

Each mini-raster is dealt with as H>-bit words; hence it must be
word-aligned, and consist of fc_hs raster lines each of which con­
tains an integral number of 16-bit data words. The actual position
of upper-left corner of miniraster is (curx + fc_ha, cury + fc_va
). Every word of mini-raster information is stored HIGH byte
first, a la mc68000. The low order bit of the first word is the left­
most raster point. Bit-O of the first word thus corresponds to the
upper-left corner of the character.

The actual bit pattern of a character is flush left in its mini-raster.
The bits to the right of the pattern (i.e. to the right of fc_hs) and
before the short boundary must be O. Normally, fc_va is nega­
tive, thus implying that coordinate (0, 0) is upper left.

- 1 -

FONT (4) (AT&T UNIX PC only) FONT (4)

Note that this font format is similar to both the MIT ((Nu" Sys­
tem font format and the Berkeley ((vfont" format.

Note too that fonts which appear in windows must be 12-point.

A variant of a font character (struct fcdef) is an icon. The icon
structure differs from a font character in that the miniraster infor­
mation is located immediately after the header information. Icons
are used for, among other things, controlling the appearance of the
mouse-tracking cursor on t.he display.

The icon structure is as follo"'vvs:

#define ICONSIZE 64

struct icon
{

};

char
struct fcdef
unsigned short

/* shorts in icon raster area * /

/* an icon * /

ic_flags; /* flags * /
ic_fc; /* font def * /
ic_raster[ICONSIZE]; /* raster data * /

Currently, there are no flags defined for t"cJiags.

EXAMPLE

Char
a

miniraster
size
50

(curx+fc_ha,cury+fc_va) + - - - - - - - - -

baseline (curx,cury)+

--xxxxx---
-XXXXXXX--
-XX---XXX-
-------XX-
----XXXXX-
-XXXXXXXX-
XXX----XX­
XX-----XX­
XX----XXX­
XXXXXXXXXX
-XXXXX-XXX

.+(curx+fc_hi,
cury)

- - - - - - - - - - .+(curx+fc_hi,
cury+fc_vi)

- 2 -

FONT (4) (AT&T UNIX PC only) FONT (4)

FILES

BUGS

/usr /include/sys/font.h
/usr /lib/wfontj*

Older fonts do not have any value specified for the vertical incre­
ment (fe_v£) as this is a relatively new addition to the font char­
acter definition. Instead, these characters are made artificially
high to extend over the entire cell height.

SEE ALSO
cfont(1), syslocal(2), window(7), tam(3T).

- 3 -

FS(4) FS(4)

NAME
file system - format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain
vital information. Every such volume is divided into a certain
number of 512 byte long sectors. Sector 0 is unused and is avail­
able to contain a bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

/*
* Structure of the super-block
*/

struct filsys
{

ushort s_isize;
daddr_t s_fsize;

short s_nfree;

daddr_t s_free[NICFREE] ;
short s_ninode;

ino_t s_inode[NICINOD];
char s_flock;

char s_ilock;

char s_fmod;

char s_ronly;
time_t s_time;
short s_dinfo[4];
daddr_t s_tfree;
ino_t s_tinode;
char s_fname[6];
char s_fPackf6];
long s_fill[13 ;

long

long
};

#define FsMAGIC Oxfd187e20

#define Fslb
#define Fs2b

1
2

- 1 -

1* size in blocks of i-list * /
1* size in blocks of entire * /
1* volume */
1* number of addresses * /
1* in s_free * /
/* free block list * /
1* number of i-nodes in * /
/* s_inode * /
1* free i-node list * /
1* lock during free list * /
1* manipulation * /
1* lock during i-list * /
/* manipulation * /
1* super block modified * /
/* flag * /
1* mounted read-only flag * /
/* last super block update * /
1* device information * /
1* total free blocks * /
1* total free inodes * /
/* file system name * /
/* file system pack name * /
/* ADJUST to make size * /
1* of file system be 512 * /
/* magic number to * /
/* indicate new file system * /
/* type of new file system * /

/* s_magic number * /

/* 512 byte block * /
/* 1024 byte block * /

FS(4) FS(4)

S_type indicates the file system type. Currently, two types of file
systems are supported: the original 512-byte oriented and the new
improved 1024-byte oriented. S_magic is used to distinguish the
original 512-byte oriented file systems from the newer file systems.
If this field is not equal to the magic number, FsMAGIC, the type
is assumed to be Fslb, otherwise the s_type field is used. In the
following description, a block is then determined by the type. For
the original 512-byte oriented file system, a block is 512 bytes.
For the 1024-byte oriented file system; a block is 1024 byt.es or
two sectors. The operating system takes care of all conversions
from logical block numbers to physical sector numbers.

S_isize is the address of the first data block after the i-list; the i­
list starts just after the super-block, namely in block 2; thus the
i-list is s_isize -2 blocks long. SJsize is the first block not poten­
tially available for allocation to a file. These numbers are used by
the system to check for bad block numbers; if an "impossible"
block number is allocated from the free list or is freed, a diagnos­
tic is written on the on-line console. Moreover, the free array is
cleared, so as to prevent further allocation from a presumably cor­
rupted free list.

The free list for each volume is maintained as follows. The sJree
array contains, in sJree[l], ... , sJree[s_n/ree-1]' up to 49
numbers of free blocks. SJree [0] is the block number of the head
of a chain of blocks constituting the free list. The first long in
each free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain member. The
first of these 50 blocks is the link to the next member of the chain.
To allocate a block: decrement s_nfree, and the new block is
sJree [s_nfree]. If the new block number is 0, there are no blocks
left, so give an error. If s_nfree became 0, read in the block
n~l.med by the new block number, replace s_nfree by its first
word, and copy the block numbers in the next 50 longs into the
sJree array. To free a block, check if s_nfree is 50; if so, copy
s_nfree and the sJree array into it, write it out, and set s_nfree
to o. In any event set sJree [s_n/ree] to the freed block's number
and increment s_nfree .

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array.
To allocate an i-node: if s_ninode is greater than 0, decrement it
and return s_inode [s_ninode]. If it was 0, read the i-list and
place the numbers of all free inodes (up to 1(0) into the s_inode
array, then try again. To free an i-node, provided s_ninode is less
than 100, place its number into s_inode [s_ninode] and increment
s_ninode. If s_ninode is already 100, do not bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up
the allocation process; the information as to whether the inode is
really free or not is maintained in the inode itself.

S_tinode is the total free inodes available in the file system.

SJock and s_ilock are flags maintained in the core copy of the
file system while it is mounted and their values on disk are

- 2 -

FS(4)

FILES

FS(4)

immaterial. The value of sJmod on disk is likewise immaterial; it
is used as a flag to indicate that the super-block has changed and
should be copied to the disk during the next periodic update of file
system information.

S_Tonly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed since
00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the system's idea
of the time.

SJname is the name of the file system and sJpack is the name of
the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block
2. Also, i-nodes are 64 bytes long. I..,node 1 is reserved for future
use. I-node 2 is reserved for the root directory of the file system,
but no other i-number has a built-in meaning. Each i-node
represents one file. For the format of an inode and its flags, see
inode (4).

lusr linclude/sys/filsys.h
lusr linclude/sys/stat.h

SEE ALSO
fsck(1M), fsdb(1M), mkfs(1M), inode(4).

- 3-

FSPEC(4) FSPEC (4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on UNIX with
non-standard tabs, (i.e., tabs which are not set at every eighth
column). Such files must generally be converted to a standard for­
mat, frequently by replacing all tabs with the appropriate number
of spaces, before they can be processed by UNIX commands. A
format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and : > .
Each parameter consists of a keyletter, possibly followed immedi­
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.
The value of tabs must be one of the following:

1. a list of column numbers separated by commas,
indicating tabs set at the specified columns;

2. a - followed immediately by an integer n, indi­
cating tabs at intervals of n columns;

3. a - followed by the name of a "canned!l tab
specification.

Standard tabs are specified by t-8, or equivalently,
tl,O,17,25,etc. The canned tabs which are recog­
nized are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is
performed after tabs have been expanded, but before
the margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be
an integer.

d The d parameter takes no value. Its presence indi­
cates that the line containing the format specification
is to be deleted from the converted file.

e The e parameter takes no value. Its presence indi­
cates that the current format is to prevail only until
another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied,
are t-8 and mO. If the s parameter is not specified, no size
checking is performed. If the first line of a file does not contain a
format specification, the above defaults are assumed for the entire
file. The following is an example of a line containing a format
specification:

* < :t5, 10, 15 s72: > *
If a format specification can be disguised as a comment, it is not
necessary to code the d parameter.

- 1 -

FSPEC (4) FSPEC (4)

Several UNIX commands correctly interpret the format
specification for a file. Among them is gath, which may be used
to convert files to a standard format acceptable to other UNIX
commands.

SEE ALSO
ed(l), newform(l), tabs(l).

- 2 -

GETTYDEFS (4) GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettyders file contains information used by gettY(lM)
(see the UNIX System Administrator's Manual) to set up the speed
and terminal settings for a line. It supplies information on what
the login prompt should look like. It also supplies the speed to try
next if the user indicates the current speed is not correct by typ­
ing a < break> character.

Each entry in /etc/gettyders has the following format:

label# initial-flags # final-flags # login-prompt #next­
label

Each entry is followed by a blank line. The various fields can con­
tain quoted characters of the form \h, \n, \c, etc., as well as
\nnn, where nnn is the octal value of the desired character. The
various fields are:

label

initial-flags

final-flags

This is the string against which getty tries to
match its second argument. It is often the speed,
such as 1200, at which the terminal is supposed to
run, but it needn't be (see below).

These flags are the initial ioctl(2) settings to which
the terminal is to be set if a terminal type is not
specified to getty. The flags that getty understands
are the same as the ones listed in
/usr/include/sys/termio.h (see termio(7) in the
UNIX System Administrator's Manual). Normally
only the speed flag is required in the initial-flags.
Getty automatically sets the terminal to raw input
mode and takes care of most of the other flags.
The initial-flag settings remain in effect until getty
executes login(lM).

These flags take the same values as the inUial-flags
and are set just prior to getty executes login. The
speed flag is again required. The composite flag
SANE takes care of most of the other flags that
need to be set so that the processor and terminal
are communicating in a rational fashion. The
other two commonly specified final-flags are TAB3,
so that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final
close.

login-prompt This entire field is printed as the login-prompt.

next-lab el

Unlike the above fields where white space is
ignored (a space, tab or new-line), they are
included in the login-prompt field.

If this entry does not specify the desired speed,
indicated by the user typing a < break> character,
then getty will search for the entry with next-lab el
as its lab el field and set up the terminal for those

- 1 -

GETTYDEFS (4) GETTYDEFS (4)

FILES

settings. Usually, a series of speeds are linked
together in this fashion, into a closed set. For
instance, 2400 linked to 1200, which in turn is
linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/ etc/ gettyders is used, thus making the first entry of
/etc/gettyders the default entry. It is also used if getty can't
find the specified lab el. If / etc/ gettydefs itself is missing, there
is one entry built into the command which will bring up a termi­
nal at 300 baud.

I t is strongly recommended that after making or modifying
/ etc/ gettydefs, it be run through getty with the check option to
be sure there are no errors.

/ etc / gettydefs

SEE ALSO
getty(lM), login(lM), termio(7) III the UNIX System
Adm£nistrator's Manual.
ioctl(2).

- 2-

GROUP (4) GROUP (4)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the password
field is null, no password is demanded.

This file resides in directory / etc. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical group ID's to names.

/etc/group

SEE ALSO
newgrp(1), passwd(l), crypt(3C), passwd(4).

- 1 -

INITTAB (4) INITTAB (4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general pro­
cess dispatcher. The process that constitutes the majority of ina's
process dispatching activities is the line process / etc/ getty that
initiates individual terminal lines. Other processes typically
dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent
and have the following format:

id: rstate: action :process

Each entry is delimited by a newline, however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up to
512 characters per entry are permitted. Comments may be
inserted in the process field using the sh(l) convention for com­
ments. Comments for lines that spawn gettys are displayed by
the who(1) command. It is expected that they will contain some
information about the line such as the location. There are no lim­
its (other than maximum entry size) imposed on the number of
entries within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify
an entry.

rstate This defines the run-level in which this entry is to be
processed. Run-levels effectively correspond to a
configuration of processes in the system. That is, each
process spawned by init is assigned a run-level or run­
levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As
an example, if the system is in run-level I, only those
entries having a 1 in the rstate field will be processed.
When init is requested to change run-levels, all processes
which do not have an entry in the rstate field for the tar­
get run-level will be sent the warning signal (SIGTERM)
and allowed a 20 second grace period before being forci­
bly terminated by a kill signal (SIGKILL). The rstate
field can define mUltiple run-levels for a process by
selecting more than one run-level in any combination
from 0-6. If no run-level is specified, then the process is
assumed to be valid at all run-levels 0-6. There are
three other values, 8., band c, which can appear in the
rstate field, even though they are not true run-levels.
Entries which have these characters in the rstate field are
processed only when the telinit (see init(lM)) process
requests them to be run (regardless of the current run­
level of the system). They differ from run-levels in that
init can never enter run-level 8., b or c. Also, a request
for the execution of any of these processes does not
change the current run-level. Furthermore, a process
started by an 8., b or c command is not killed when init
changes levels. They are only killed if their line in

- 1 -

INITTAB (4) INITTAB(4)

/etc/inittab is marked oft' in the actz"on field, their line
is deleted entirely from /etc/inittab, or init goes into
the SINGLE USER state.

action Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by
init are as follows:

respawn

wait

once

boot

bootwait

If the process does not exist then start the
nro~p.~c; rio not. w~.it. for it."! t.~rTYI;n<::lt;l"\n

(~;~ti~~e -~c~~~in~ --th~ --in;'ttab--fii~')~~~~d
when it dies rest;;'rt the process. 'if the
process currently exists then do nothing
and continue scanning the inittab file.

Upon init's entering the run-level that
matches the entry's rstate, start the pro­
cess and wait for its termination. All sub­
sequent reads of the inittab file while init is
in the same run-level will cause inz"t to
ignore this entry.

Upon init's entering a run-level that
matches the entry's rstate, start the pro­
cess, do not wait for its termination and
when it dies, do not restart the process. If
upon entering a new run-level, where the
process is still running from a previous
run-level change, the program will not be
restarted.

The entry is to be processed only at ina"t's
boot-time read of the inittab file. [nit is to
start the process, not wait for its termina­
tion, and when it dies, not restart the pro­
cess. In order for this instruction to be
meaningful, the rstate should be the
default or it must match init's run-level at
boot time. This action is useful for an ini­
tialization function following a hardware
reboot of the system.

The entry is to be processed only at init's
boot-time read of the inittab file. [nit is to
start the process, wait for its termination
and, when it dies, not restart the process.

powerfail Execute the process associated with this
entry only when init receives a power fail
signal (SIGPWR see signal(2)).

powerwait Execute the process associated with this
entry only when init receives a power fail
signal (SIGPWR) and wait until it ter­
minates before continuing any processing
of inittab.

- 2 -

INITTAB (.{) INITTAB (.{)

FILES

off If the process associated with this entry is
currently running, send the warning signal
(SIGTERM) and wait 20 seconds before
forcibly terminating the process via the kill
signal (SIGKILL). If the process is nonex­
istent, ignore the entry.

ondemand This instruction is really a synonym for
the respawn action. It is functionally
identical to respawn but is given a
different keyword in order to divorce its
association with run-levels. This is used
only with the a, b or c values described in
the rstate field.

initdefault An entry with this action is only scanned
when im't is initially invoked. [nit uses
this entry, if it exists, to determine which
run-level to enter initially. It does this by
taking the highest run-level specified in the
rstate field and using that as its initial
state. If the rstate field is empty, this is
interpreted as 0123456 and so ,'nit will
enter run-level 6. Also, the initdefault
entry cannot specify that init start in the
SINGLE USER state. Additionally, if ina
doesn't find an initdefault entry in
/etc/inittab, then it will request an ini­
tial run-level from the user at reboot time.

sysinit Entries of this type are executed before
init tries to access the console. It is
expected that this entry will be only used
to initialize devices on which init might try
to ask the run-level question. These
entries are executed and waited for before
continuing.

process This is a sh command to be executed. The entire pro­
cess field is prefixed with exec and passed to a forked sh
as sh -c 'exec command'. For this reason, any legal sh
syntax can appear in the the process field. Comments
can be inserted with the; =#comment syntax.

/etc/inittab

SEE ALSO

BUGS

getty(lM), init(lM) in the UNIX System Administrator's Manual.
sh(1), who(1), exec(2), open(2), signal(2).

On the UNIX PC the inittab file is often manipUlated by user­
level Administration functions performed through the Office.
Haphazard modification by the user of /etc/inittab can
thoroughly confuse this set of functions.

- 3-

INODE(4)

NAME
inode - format of an inode

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system has the fol­
lowing structure defined by <sys/ino.h>.

FILES

1* Inode structure as it appears on a disk block. *1
struct dinode
{

ushort di_:i:node;
short di_nlink;
ushort di_uid;
ushort di~id;
ofCt di_size;
char di_addr[40];
time_t di_atime;
time_t di_mtime;
time_t di_ctiine;

};
1* * the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*!

I * mode and type of file * I
1* number of links to file *1
1* owner's user id *1
1* owner's group id *1
1* number of bytes in file * I
1* disk block addresses *1
1* time last accessed *1
I * time last modified * I
I * time created * I

For the meaning of the defined types off_t and time_t see
types(S).

lusr linclude/sys/ino.h

SEE ALSO
stat(2), fs(4), types(S).

- 1 -

ISSUE (4) ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION
The file fete/issue contains the issue or project identification to
be printed as a login prompt. This is an ASCII file which is read
by program getty and then written to any terminal spawned or
respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(lM).

- 1 -

LDFCN(4) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include < Idfen.h >

DESCRIPTION
The common obj ect file access routines are a collection of func­
tions for reading an object file that is in VAX or 3B20S (common)
object file form. Although the calling program must know the
detailed structure of the parts of the object file that it processes,
the routines effectively insulate the calling program from
knowledge of the overall structure of the object file.

The interface between the calling program and the object file
access routines is based on the defined type LDFILE, defined as
struet IdfiIe, declared in the header file Idfen.h. The primary
purpose of this structure is to provide uniform access to both sim­
ple object files and to object files that are members of an archive
file.

The function ldopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling pro­
gram. The fields of the LDFILE structure may be accessed indivi­
dually through macros defined in Idfen.h and contain the follow­
ing information:

LDFILE * ldptr;

TYFE(ldptr)

IOPTR(ldptr)

OFFSET(Id ptr)

The file magic number, used to distinguish
between archive members and simple obj ect files.

The file pointer returned by Jopen and used by
the standard input/output functions.

The file address of the beginning of the object
file; the offset is non-zero if the object file IS a
member of an archive file.

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided into
four categories:

(1) functions that open or close an object file

ldopen(3X) and ldaopen
open a common object file

ldclose (3X) and ldaclose
close a common object file

(2) functions that read header or symbol table informa­
tion

ldahread(3X)
read the archive header of a member of
an archive file

- 1 -

LDFCN(4) LDFCN(4)

IdJhread(3X)
read the file header of a common object
file

Idshread(3X) and ldnshread
read a section header of a common object
file

Idtbread(3X)
read a symbol table entry of a common
I"IhiPf't. flIp --J-_ V ~ •• -

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number information
for a particular section.

Idohseek(3X)
seek to the optional file header of a com­
mon object file

Idsseek(3X) and ldnsseek
seek to a section of a common object file

Idrseek(3X) and ldnrseek
seek to the relocation information for a
section of a common object file

Idlseek(3X) and ldnlseek
seek to the line number information for a
section of a common object file

Idtbseek(3X)
seek to the symbol table of a common
object file

(4) the function ldtbt"ndex(3X) which returns the index of
a particular common object file symbol table entry

These functions are described in detail in their respective manual
pages.

All the functions except ldopen, ldaopen and ldtbt"ndex return
either SUCCESS or FAILURE, both constants defined in Idfcn.h.
Ldopen and ldaopen both return pointers to a LDFILE structure.

MACROS
Additional access to an obj ect file is provided through a set of
macros defined in Idfcn.h. These macros parallel the standard
input/output file reading and manipulating functions, translating
a reference of the LDFILE structure into a reference to its file
descriptor field.

The following macros are provided:

LDFILE *ldptr;

GETC(Idptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)

- 2 -

LDFCN(4)

REWIND(ldptr)
FEOF(Idptr)
FERROR(Idptr)
FILENO(ldptr)
SETBUF(ldptr, buf)

LDFCN(4)

See the manual entries for the corresponding standard
input/output library functions for details on the use of these mac­
ros.

The program must be loaded with the object file access routine
library libId.a.

CAVEAT
The macro FSEEK defined in the header file Idfcn.h translates
into a call to the standard input/output function Jseek(3S).
FSEEK should not be used to seek from the end of an archive file
since the end of an archive file may not be the same as the end of
one of its obj ect file members!

SEE ALSO
fseek(3S), Idahread(3X), Idclose(3X), Idfhread(3X), Idlread(3X),
Idlseek(3X), Idohseek(3X), Idopen(3X), Idrseek(3X), Idlseek(3X),
Idshread(3X), Idtbindex(3X), Idtbread(3X), Idtbseek(3X).
Common Obiect F£le Format, by 1. S. Law.

- 3-

LINENUM (4) LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
Compilers based on pee generate an entry in the object file for
each C source line on which a breakpoint is possible (when
invoked with the -g option; see ee(l)). Users can then reference
line numbers when using the appropriate software test system (see
sdb(l)). The structure of these line number entries appears below.

struct lineno
{

union
{

long l_symndx ;
long l_paddr ;

} l_addr;
unsigned short l_lnno;

} ;
Numbering starts with one for each function. The initial line
number entry for a function has Clnno equal to zero/ and the sym­
bol table index of the function's entry is in Lsymndx. Otherwise/
Clnno is non-zero/ and Lpaddr is the physical address of the code
for the referenced line. Thus the overall structure is the following:

Caddr Clnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cC(l), sdb(l), a.out(4).

- 1 -

MASTER (4) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the kernel to obtain device information. The
file consists of 3 parts, each separated by a line with a dollar sign
($) in column 1. Part 1 contains device information; part 2 con­
tains names of devices that have aliases; part 3 contains tunable
parameter information. Any line with an asterisk (*) in column 1
is treated as a comment.

Part 1 contains lines consisting of at least 6 fields, with the fields
delimited by tabs and/or blanks:

Field 1: device name (8 characters maximum).
Field 2: device mask (octal)-each "on" bit indicates

that the handler exists:
002000 info
001000 release
000400 strategy
000200 print
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

Field 3: device line discipline mask (octal)- each "on"
bit indicates that the handler exists:
000200 modem interrupt handler
000100 output handler
000040 input handler
000020 ioctl handler
000010 write handler
000004 read handler
000002 close handler
000001 open handler.

Field 4: device type indicator (octal):
000200 allow only one of these devices
000100 suppress count field in the conr.c

file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

Field 5: handler prefix (4 characters maximum).
Field 6: major device number for block-type device.
Field 7: major device number for character-type device.

Part 2 contains lines with 2 fields each:

- 1 -

MASTER (4)

Field 1:
Field 2:

MASTER (4)

alias name of device (8 characters maximum).
reference name of device (8 characters max­
imum; specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description
file; 20 characters maxim urn).

Field 2: parameter name (as it appears in the conr.c
file; 20 characters maximum).

Field 3: default parameter value (20 characters max­
imum; parameter specification is required if this
field is omitted).

- 2-

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include < mnttab.h >

DESCRIPTION
Mnttab resides in directory / etc and contains a table of devices,
mounted by the mount(1M) command, in the following structure
as defined by <mnttab.h>:

struct mnttab {
char

};

char
short
time_t

mt_dev[lO];
mt_filsys[10];
mt_ro_fig;
mt_time;

Each entry is 26 bytes in length; the first 10 bytes are the null­
padded name of the place where the special file is mounted; the
next 10 bytes represent the null-padded root name of the mounted
special file; the remaining 6 bytes contain the mounted special
file's read/write permissions and the date on which it was
mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/src/uts/cf/conf.c, which
defines the number of allowable mounted special files.

SEE ALSO
mount(1M), setmnt(1M).

- 1 -

PASSWD (4) PASSWD (4)

NAME
passwd - password file

DESCRIPTION

FILES

Pas8wd contains for each user the following information:

login name
encrypted password
numerical user 10
numerical group 10
GCOS job number, box number, optional GCOS user 10
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon. The GCOS field is used only
when communicating with that system, and in other installations
can contain any desired information. Each user is separated from
the next by a new-line. If the password field is null, no password
is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory / etc. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical user ID's to names.

The encrypted password consists of 13 characters chosen from a
64 character alphabet (0, /, O-g, A-Z, a-z), except when the
password is null in which case the encrypted password is also null.
Password aging is effected for a particular user if his encrypted
password in the password file is followed by a comma and a non­
null string of characters from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced to
supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63 that correspond to the 64
character alphabet shown above (i.e. / = 1 week; z = 63 weeks).
If m = M = 0 (derived from the string 0 or 00) the user will be
forced to change his password the next time he logs in (and the
"age" will disappear from his entry in the password file). If m >
M (signified, e.g., by the string oj) only the super-user will be able
to change the password.

/etc/passwd

SEE ALSO

BUGS

login(IM), passwd(I), a64I(3C), crypt(3C), getpwent(3C), group(4).

On the UNIX PC, the passwd file is often manipulated by user­
level Administration functions performed through the Office.

- 1 -

PASSWD(4) PASSWD (4)

Haphazard modification by the user of /etc/passwd can
thoroughly confuse this set of functions.

- 2 -

PHONE { 4) (AT&T UNIX PC Only) PHONE (4)

NAME
phone - phone directory file format

DESCRIPTION
The phone directory (.phdir) files created by the Telephone
Manager may be used by other programs. These files store tele­
phone directory and user preference information.

Header
The .phdir file header occupies the first 256 bytes of the file and
is organized in fields as follows. User preference items described
below can be set through the Telephone Preferences in the Office.

Field Description

Magic Number (short)
Version (short)
Revision (short)
No. of Recs. (short)
Max. Rec. No. (short)
N1 (short)

N2 (short)
N3 (short)
N4 (short)
N5 (short)
N6 (short)
N7 (short)
N8 (short)
N9 (short)
NlO (short)
NIl (short)
N12 (short)
N13 (short)
N14 (short)
N15 (short)
SLKI (short)

SLK2 (short)
SLK3 (short)
SLK 4 (short)
SLK5 (short)
SLK6 (short)
SLK7 (short)
01 (short)

Number of records contained in the file.
Largest record number used in the file.
Pointers to up to 15' records to be
included in the Call Screen.

Pointers to up to 7 records associated
with the function keys F1, F3-F8. The
Telephone Manager places a call to the
associated number when the function key
is pressed with Shift. No record is associ­
ated with F2 since Shift-F2 displays the
Call Screen.

Pointers to up to 14 records associated
with other keyboard keys. Consult the
AT&T UNIX PC Telephone Manager
User's Guide for detailed keyboard infor­
mation.

- 1 -

PHONE (4)

02 (short)
03 (short)
04 (short)
05 (short)
06 (short)
07 (short)
08 (short)
09 (short)
010 (short)
011 (short)
012 (short)
013 (short)
014 (short)
*Nl (long)

*N2 (long)
*N3 (long)
*N4 (long)
*N5 (long)
*N6 (long)
*N7 (long)
*N8 (long)
*N9 (long)
*NlO (long)
*Nll (long)
FO (short)

Fl (short)
F2 (short)
SEC (short)

FLAGI (short)

FLAG2 (short)

FLAG3 (short)

FLAG4 (short)

FLAGS (short)

FLAG6 (short)

FLAG7 (short)
FLAG8 (short)

Data

(AT&T UNIX PC Only) PHONE (4)

Character pointers to the field names for
the directory entry form.

Pointers to the fields that are to be
displayed in the directory entry form
(user preference item).

Number of seconds to delay before log­
ging call (user preference item).
Number of entries allowed in the history
list before a warning is issued (user
preference item).
Logging of incoming calls enabled or dis­
abled (user preference item).
Logging of outgoing calls enabled or dis­
abled (user preference item).
Invoke Telephone Manager on off-hook
enabled or disabled (user preference
item).
Display beginning of notes enabled or dis­
abled (user preference item).
Display beginning of history list enabled
or disabled (user preference item).
Reserved.
Reserved.

Following the header, bytes 256 to 1023 contain the names
assigned to the fields in the directory entry form. Several of these
are user preference items.

- 2 -

PHONE { 4) (AT&T UNIX PC Only) PHONE { 4)

Bytes 1024 through 1535 contain the master list of the data
records. The maximum possible record number is 65536. Bytes
1536 through 15359 contain the index list for the records.

Following the index list are the data records. Each record consists
of a string for each field of the directory entry form, delimited by
\n. When a field is empty, no string appears between the delim­
iters.

SEE ALSO
phone(7), dial(3C), AT&T UNIX PC Telephone Manager User's
Gut"de.

- 3-

PNCH(4) PNCH(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consist~
ing of card images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card
record consists of a single control byte followed by a variable
number of data bytes. The control byte specifies the number
(which must lie in the range 0-80) of data bytes that follow. The
data bytes are ~ bit codes that constitute the card image. If there
are fewer than 80 data bytes, it is understood that the remainder
of the card image consists of trailing blanks.

~ 1 -

PROFILE (4) PROFILE (4)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will
be executed (via the shell's exec .profile) before your session
begins; .profiles are handy for setting exported environment vari­
ables and terminal modes. If the file / etc/ profile exists, it will
be executed for every user before the .profile. The following
example is typical (except for the comments):

#= Make some environment variables global
export MAIL PATH TERM
#= Set file creation mask
urn ask 22
#= Tell me w hen new mail comes in
MAIL= /usr /mail/myname
#= Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
#= Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300)

esac

300s)
450)
hp)
745\ 735)
43)
4014\ tek)
*)

$HOME/ .profile
/ etc /profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty cr1 nil -tabs; TERM=745;;
stty cr1 nlO -tabs;;
stty crO nlO -tabs ff1; TERM=4014; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO

BUGS

env(1), login(1M), mail(1), sh(1), stty(1), su(1), environ(5), term(5).

On the UNIX PC the profile file is often manipulated by user-level
Administration functions performed through the Office. Hapha­
zard modification by the user of / etc/ profile can thoroughly con­
fuse this set of functions.

- 1 -

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include < reloc.h >

DESCRIPTION
Object files have one relocation entry for each relocatable refer­
ence in the text or data. If relocation information is present, it
will be in the following format.

struct reloc
{

long
long
short

r_vaddr ; /* (virtual) address of reference * /
r_symndx; /* index into symbol table * /
r_type ; /* relocation type * /

} ;

/*
* All generics
* reloc. already performed to symbol in the same section
*/

#define R...ABS o

/*
* 3B generic
* 24-bit direct reference
*
*
*
*

24-bit "relative" reference
16-bit optimized "indirect" TV reference
24-bit "indirect" TV reference
32-bit "indirect" TV reference

*/
#define R_DIR24 04
#define R.-REL24 05
#define R_OPT16 014
#define R_IND24 015
#define R_IND32 016

/*
* DEC Processors VAX 11/780 and VAX 11/750
*
*/

#define R_RELBYTE 017
#define R.-RELWORD 020
#define R.-RELLONG 021
#define RYCRBYTE 022
#define RYCRWORD 023
#define RYCRLONG 024

As the linlc editor reads each input section and performs reloca­
tion, the relocation entries are read. They direct how references
found within the input section are treated.

- 1 -

RELOC(4) RELOC (4)

The reference is absolute, and no relocation is
necessary. The entry will be ignored.

A direct, 16-bit reference to a symbol's virtual
address.

A "PC-relative," 16-bit reference to a symbol's
virtual address. Relative references occur in
instructions such as jumps and calls. The actual
address used is obtained by adding a constant to
the vaiue of the program counter at the time the
instruction is executed.

An indirect, 16-bit reference through a transfer
vector. The instruction contains the virtual
address of the transfer vector, where the actual
address of the referenced word is stored.

The reference is absolute, and no relocation is
necessary. The entry will be ignored.

A direct, 24-bit reference to a symbol's virtual
address.

A "PC-relative," 24-bit reference to a symbol's
virtual address. Relative references occur in
instructions such as jumps and calls. The actual
address used is obtained by adding a constant to
the value of the program counter at the time the
instruction is executed.

An optimized, indirect, 16-bit reference through a
transfer vector. The instruction contains the
offset into the transfer vector table to the transfer
vector where the actual address of the referenced
word is stored.

An indirect, 24-bit reference through a transfer
vector. The instruction contains the virtual
address of the transfer vector, where the actual
address of the referenced word is stored.

An indirect, 32-bit reference through a transfer
vector. The instruction contains the virtual
address of the transfer vector, where the actual
address of the referenced word is stored.

R_RELBYTE A direct 8 bit reference to a symbol's virtual
address.

R_RELWORD A direct 16 bit reference to a symbol's virtual
address.

R_RELLONG A direct 32 bit reference to a symbol's virtual
address.

R_PCRBYTE A "PC-relative," 8 bit reference to a symbol's vir­
tual address.

R_PCRWORD A ((PC-relative," 16 bit reference to a symbol's
virtual address.

- 2 -

RELOC(4) RELOC (4)

R_PCRLONG A "PC-relative," 32 bit reference to a symbol1s
virtual address.

On the VAX. processors relocation of a symbol index of -1 indicates
that the relative difference between the current segment1s start
address and the program IS load address is added to the relocatable
address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler
and automatically utilized by the link editor. A link editor option
exists for removing the relocation entries from an object file.

SEE ALSO
Id(l), strip(l), a.out(4), syms(4).

- 3-

seeSFILE (4) seeSFILE (4)

NAME
sccsfile - format of sees file

DESCRIPTION
An sees file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter­
mixed with control lines).

Throughout an sees file there are lines which begin with the
ASCII SOH (start of heading) character (octal 001). This charac­
ter is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a
number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form
of the line is:

@hDDDDD

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of
the form:

@8DDDDD/DDDDD/DDDDD

@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD

@iDDDDD •••

@xDDDDD •••

@gDDDDD •••

@m <MR number>

@c <comments> •••

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line
(@d) contains the type of the delta (currently, normal: D,
and removed: R), the sees ID of the delta, the date and

- 1 -

SCCSFTI..E (4) SCCSFILE (4)

time of creation of the delta, the login name correspond­
ing to the real user ID at the time the delta was created,
and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of
deltas included, excluded, and ignored, respectively.
These lines are optional.

The @m lines (optional) each contain one MR number
associated with the delta; the @c lines contain comments
associated with the delta.

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of
users who .may add deltas to the file, separated by new­
lines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing
lines @u and @U. An empty list allows anyone to make a
delta.

Keywords used internally (see admin(1) for more informa­
tion on their use). Each flag line takes the form:

@f <flag> < optional text>

The following flags are defined:
@f t < type of program>
@f v <program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj

<module name>
<floor>
<ceiling>
< default-sid>

@f I <lock-releases>
@f q < user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y%
identification keyword. The v flag controls prompting for
MR numbers in addition to comments; if the optional text
is present it defines an MR number validity checking pro­
gram. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is
present, this message will cause a "fatar' error (the file
will not be gotten, or the delta will not be made). When
the b flag is present the - b key letter may be used on the

- 2 -

SCCSFILE(4) SCCSFILE (4)

get command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of the
%M% identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be
added. The e flag defines the "ceiling" release; the release
above which no deltas may be added. The d flag defines
the default SID to be used when none is specified on a get
command. The n flag causes delta to insert a "null" delta
(a delta that applies no changes) in those releases that are
skipped when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The I flag
defines a list of releases that are locked against editing
(get(l) with the -e keyletter). The q flag defines the
replacement for the %Q% identification keyword. z flag
is used in certain specialized interface programs.

Comments

Body

SEE ALSO

Arbitrary text surrounded by the bracketing lines @t and
@T. The comments section typically will contain a
description of the file's purpose.

The body consists of text lines and control lines. Text
lines don't begin with the control character, control lines
do. There are three kinds of control lines: insert, delete,
and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number
corresponding to the delta for the control line.

admin(l), delta(l), get(l), prs(l).
Source Code Control System User'8 Gua"de in the UNIX System
User's Guide.

- 3-

SCNHDR(4) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify
the layout of the data within the file. Each section within an
object file has its own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN]; / * section name * /
sJ>addr; / * physical address * /
s_vaddr; /* virtual address */
s_size; /* section size */
s_scnptr; /* file ptr to raw data * /
s_relptr; /* file ptr to relocation * /
s_lnnoptr; /* file ptr to line numbers */
s_nreloc; / * # reloc entries * /
s_nlnno; /* # line number entries */
s_flags; / * flags * /

File pointers are byte offsets into the file; they can be used as the
offset in a call to Jseek(3S). If a section is initialized, the file con­
tains the actual bytes. An uninitialized section is somewhat
different. It has a size, symbols defined in it, and symbols that
refer to it. But it can have no relocation entries, line numbers, or
data. Consequently, an uninitialized section has no raw data in
the object file, and the values for s_scnptr, s_relptr, s_lnnoptr,
s_nreloc, and s_nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a.out(4).

..; 1 -

SHLIB (4) (AT&T UNIX PC only) SHLm(4)

NAME
shlib - shared library

DESCRIPTION

FILES

UNIX PC UNIX supports a shared library. Its use results in
significantly smaller programs, reduced startup times, and better
runtime performance. This is accomplished by loading the library
with the first program that invokes it. The library is then shared
with subsequent programs. Once loaded, the library remains in
place until the system is reset.

The shared library contains all the routines traditionally loaded by
-lc, -ltam, and -ltermlz'b.

Use of the shared library requires a change to the makefiles.
Source code remains unchanged. The typical makefile link-load
line is

$(LD) $(LDFLAGS) -0 target objects -lc -ltam -ltermlib

or

$(CC) $(LDFLAGS) -0 target objects -ltam -ltermlib

should be replaced with

$(LD) $(LDFLAGS) $(SHAREDLIB) -0 target objects

where target is the executable and obJects are the files with the .0

suffixes. $(SHAREDLIB) is defined in $(MAKEINC)/Makepre.h.

/lib/shlib
/lib/shlib.ifile
/lib/crtOs.o

SEE ALSO

BUGS

cc(1), ld(1).

Programs that redefine symbols in the shared library cannot use it
and must rename the conft.icting symbols.
A shared library subroutine cannot contain a breakpoint.

- 1 -

SYMS (4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION
Common object files contain information to support symbolic
software testing (see sdb (1). Line number entries, linenum(4), and
extensive symbolic information permit testing at the C source
level. Every object file's symbol table is organized as shown
below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members
of the structure hold the name (null padded), its value, and other
information. The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment
{

} ;

char
long
short
unsigned short
char
char

n_name[SYMNMLEN] ;
n_value ; /* value of symbol */
nJcnum; /* section number */
n_type ; / * type and derived type * /
n_sclass ; / * storage class * /
n_numaux; / * number of aux entries * /

Meaningful values and explanations for them are given in both
syms.h and Common Object File Format. Anyone who needs to
interpret the entries should seek more information in these
sources. Some symbols require more information than a single
entry; they are followed by auxiliary entries that are the same size
as a symbol entry. The format follows.

- 1 -

SYMS (4)

union auxent
{

struct
{

long
union
{

struct
f
~

unsigned short x_lnno;
unsigned short x_size;

} x_Insz;
long x_fsize;

} x_misc;
union
{

struct
{

}
struct
{

long
long
x_fen;

x_Innoptr;
x_endndx;

SYMS (4)

unsigned short x_dimen[DIMNUM];
} x_ary;

};

} x_fcnary;
unsigned short x_tvndx;

} x_sym;
struct
{

ehar x_fname[FILNMLEN];
} x_file;
struct
{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct
{

unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l), a.out(4), linenum(4).
Common Object File Format by I. S. Law.

- 2 -

UA(4) (AT&T UNIX PC only) UA(4)

NAME
ua - user agent configuration files

DESCRIPTION
The user agent configuration files in the directory / usr /lib / ua
may be used by other programs. Since these files direct the
actions of the user agent, they are protected against inadvertent
modification. The files can be changed only by super user editing
them in ed (or whatever) or by programmatic changes (e.g., an
install or remove script).

The configuration files are:

Suffixes

Office

Administration

Preferences

Environment

Defines file types and default
actions on files.

Defines initial office objects and
their default actions.

Defines
objects.

initial administration

Defines initial objects for which
preferences can be set.

Defines environment variables.

Provides access to emulator appli­
cations through the phone
manager.

All the files use a keyword = value syntax. The keyword is
always at the beginning of a line, and a newline terminates the
value. White space surrounding the keywords is ignored, as are
empty lines. Keyword matches are case sensitive, and when an
undefined keyword is found, the line is ignored.

To insert a comment, start the line with a pound sign (#).
To define new objects or environment variables, add files of these
names in your home directory. User definitions add to the system
definitions, and where conflicts occur, the user definitions override
the system definitions.

The filenames begin with an upper case letter so that they will
appear first in directory listings.

Obj ects and Actions
Except for Environment, all the files define objects for the user
agent and the legal actions (commands) that can be performed on
them. The commands for any object must be taken from the set
of user agent commands (see below).

Before any objects are defined, the user agent knows about two
classes of objects, files and menu objects, and about the com­
mands that operate on them.

The file objects class includes all UNIX files. Initially, there are
three objects defined in the files class: directories, executable files,
and files.

- 1 -

UA(4) (AT&T UNIX PC only) UA(4)

No menu objects are initially defined. Menu objects are defined in
the special files Office, Administration, and Preferences. (The
last two files are menu objects in the Office menu.)

The Suffixes file defines objects in the file class. These definitions
override the default classification of files. That is, if a file is
encountered with a defined suffix, it is assumed to be of that type,
and whether the file is a directory or is executable is not checked.

The following user agent comm::l.nds may be red.efined. for a partic­
ular object. For Menu objects, the default command is not
redefinable:

Command Object Default Action

Copy Menu object No action (beep)
Directory Copy directory and contents
Executable file Copy the file
File Copy the file

Create Menu object No action (beep)
Directory Create empty directory
Executable file No action (beep)
File Create empty file

Delete Menu object No action (beep)
Directory Delete directory and contents
Executable file Delete file
File Delete file

Help Menu object No action (beep)
Directory Enter user agent help at

directory node
Executable file Enter general user agent help
File Enter general user agent help

Move Menu object No action (beep)
Directory Move directory and contents
Executable file Move file
File Move file

Open Menu object No action (beep)
Directory Invoke files manager to

display
Executable file Display file using

default editor
File Display file

Print Menu object No action (beep)
Directory No action
Executable file Queue the file for

printing
File Queue the file for printing

- 2 -

UA(4)

Rename

Run

(AT&T UNIX PC only)

Menu object
Directory
Executable file
File

Menu object
Directory
Executable file

File

No action (beep)
Rename the directory
Rename the file
Rename the file

No action (beep)
No action (beep)
Create window and execute
file
No action (beep)

UA(4)

When no command is explicitly selected in the user agent, the
default action varies as follows:

Menu object
Directory
Executable file
File

Perform Open command
Perform Open command
Perform Run command
Perform Open command

Except for Create, the above commands are obtained by selecting
an object and then selecting either a command from the command
menu, a function key, or function key label.

In the Create case, selecting Create yields a create menu, whether
or not an object is selected. The initial Create menu contains File
folder, Modem Profile, Phone Number, RS-232 Profile, and Stan­
dard file (ASCII file).

Suffixes
The Suffixes file defines objects in the class files. The minimum
information which must be specified is the object Name, the iden­
tifying Suffix, a Description (for use in folder displays), and the
default action.

The Name keyword definition begins the object definition. Subse­
quent keyword definitions are assumed to belong to this object
until the next Name keyword is encountered. Other keywords
that are typically defined (aside from the required set given above)
are Create, Print, and Help.

The following keywords can be used in the Suffixes file:

Name = Object name
The object name is used in the create menu. If the Create
keyword is not defined, the default action on create will be
to create an empty file with the user specified name and
the appropriate suffix. The object name should be rela­
tively short, and embedded spaces are not allowed.

Suffix = file name suffix
The specified file name suffix is used to identify objects
(files) of this type. For existing applications, two letter
suffixes are used, a colon followed by an identifying letter.
For example, :W for word processor documents, or :S for
spreadsheets. The length of the user-supplied file name
plus the suffix cannot exceed 14 characters.

Description = Object description
The obj ect description is used in folder displays. It should

- 3-

UA{ 4) (AT&T UNIX PC only) UA{ 4)

be short enough to fit on a line with the file name (say 50
characters max). If the first character of the description is
an asterisk (*), then the description replaces the filename
suffix in the folder display. Otherwise, the complete
filename including the suffix is displayed.

Default = Command
Specifies which command is the default (typically Open or
Run).

Open == .l\.ction specification
The action specification defines what to do when the file is
opened via the user agent Open command. It typically
involves creating a window and executing a process with
the file passed to it as an argument. (See the "Action
Specifications" section below for details.)

Keyword = Action specification
The remaining keywords that may be defined are all of
this form. They are taken from the set of user agent com­
mands listed in the section ((Objects and Actions," and
are optional. They should only be defined when the
desired action differs from the default action.

Comm_pkgs
The Comm_pkgs file is used to support separately installed
phone managers and terminal emulators, and to support external
modems on any RS-232 port.

Each entry defines a communications application that is invoked
through the phone manager. All applications that are invoked in
this way must have an entry in the Comm_pkgs file. A single
application may have multiple entries under different names,
allowing several methods of invocation.

The following keywords can be used in the Comm_pkgs file:

Name =
Application package name.

Suffix=
The suffix the application package appends to its profiles.

Connection=
Defines the device type controlled by the application. It
may be ACU, DIR, or OBM.

Create=
This is an optional field, depending upon the functionality
supported by the application. It is the invocation sequence
for the application to create a profile.

Modify=

Setup=

This is also an optional field, depending upon the func­
tionality supported by the application. It is the invoca­
tion sequence for the application to modify a profile.

The standard invocation sequence for the package. The
phone manager does the device "set-up" and dialing. The

- 4 -

UA(4) (AT&T UNIX PC only) UA(4)

child process inherits the file descriptors.

Nosetup=
The invocation sequence when no phone number is present
in the data entry. No device "set-up" is provided.

Originate=
Specifies whether the application may be invoked from the
console only, a remote terminal only, or from either.
Allowed values are CONSOLE, REMOTE, or BOTH.

The "Setup" and "Nosetup" fields contain macros for substitution
by the phone manager. The macros are limited to passing the fol­
lowing information to the application:

PHONENUM=phone number
DEVICE=full device path
PROFNAME=full path of profile entry
PID=process ID of the phone manager
HOSTNAME=phone directory name field
FN=phone device file descriptor

Check the table below to determine if the "Nosetup" or "Setup"
action is desired.

Port and Device Type: Phone Manager Actions

Phone Port Device Phone Manager
Number Type Type Set-up Dial Invoke Macro

yes serial ACU yes yes yes Setup
no serial ACU no no yes Nosetup
yes serial DIR Error

Condition
no serial DIR yes no yes Setup
yes ph OBM yes yes yes Setup
no ph OBM no no yes Nosetup

The phone manager takes one of six paths. Port Types are either
ser£al or ph (phone). Device Types are either an A CU
(Automatic Calling Unit), which is a serial port to an external
modem, DIR (direct) connection between a serial port and another
computer, or OBM (On Board Modem) connecting to another
computer. After determining whether or not to dial, the terminal
emulator is invoked, and the macro Setup or Nosetup is used.

Menu Objects
The Office, Administration, and Preferences files define
objects in the class menu objects. The minimum information
which must be specified is the object Name and the action to take
on Open.

The Name keyword definition begins the object definition. Subse­
quent keyword definitions are assumed to belong to this object,
until the next Name keyword is encountered. The other keyword
that is typically defined is Help.

- 5 -

UA(4) (AT&T UNIX PC only) UA(4)

The following keywords can be used in a menu objects file:

Name = Object name
The object name is used when the menu is displayed. For
example, the initial Office menu display consists of those
names that are defined in the menu objects file
/usr/lib/ua./Office. The object name should be rela­
tively short.

Expert If the Expert keyword is present, then the menu itelU i:::>

only displayed in expert mode. For example, the UNIX
object in the Office menu has this keyword in its
definition.

MultiUser
If the MultiUser keyword is present, then the menu item
is only displayed in Multi-user mode. Multi-user mode can
be changed via the user agent preferences form.

Default = Command
Specifies which command is the default (typically Open or
Run).

Open = Action specification
The action specification defines what to do when the
object is selected from the menu (or optionally when the
object is opened via the user agent Open command). It
typically involves creating a window and executing a pro­
cess. (See the "Action Specifications" section below for
details).

Keyword = Action specification
The remaining keywords that may be defined are all of
this form. They are taken from the set of user agent com­
mands listed in the section "Objects and Actions," and
are optional. They should only be defined when the
desired action differs from the default action.

In general, Help is the only additional keyword defined. It is not
desirable to allow the user to perform actions such as Copy,
Create, Delete, Move, or Rename on menu objects. Those capabil­
ities are generally provided via install and remove scripts. Experi­
enced users, using the Bourne shell and a text editor, can create,
delete, and rename objects at will.

Action Specifications
The action specification always starts with one of the following
pseudo-commands:

Command Arguments

UA
FM
FO
EXEC
SH
ERROR

Menu objects file
Directory
Files
File to execute
File to execute as shell script
String to display in message window

- 6 -

UA(4) (AT&T UNIX PC only) UA(4)

UA invokes another instance of the user agent, which takes as its
menu the specified menu objects file.

FM invokes another instance of the files manager, which displays
the specified directory in a new window (folder display).

FO performs a file operation on the specified files. The operation
is specified via option characters as follows:

-c Copy
-d Delete (move to Wastebasket)
-m Move
-r Rename
-i Destination is the invisible Clipboard

EXEC executes the specified file in a fork, and any subsequent
arguments are interpreted and passed to the process as arguments.

SH executes the Bourne shell (/bio/sh) in a fork, and all argu­
ments are interpreted and passed to the shell as arguments.

ERROR says that the command is illegal for the selected object.
In the case of Create, ERROR prevents the object from being
listed in the create menu.

EXEC and SH have a number of variations, which are used
depending on the intelligence of the process being invoked. The
basic EXEC and SH assume no intelligence. They create a win­
dow of the default size, and fix file descriptors 0, I, and 2 to point
to the window, then exec the process or the shell, and wait for its
completion.

The variations are specified via option characters as follows:

-0 Run the process without a window
-w Run the process without waiting
-d Run the process in a dimensionless window
-p Run the process with superuser privileges

The following interpretation is performed on all arguments to the
commands:

%0 is replaced with the list of currently selected objects.

%0 is replaced with the name of the currently selected
object. It is an error if a list of objects is specified by the
user, and the action specification contains a %0 argu­
ment.

%N and %0 are the same as %0 and %0, respectively,
except that the suffixes are stripped off the filename .

... is replaced with the list of files in the current directory,
or in the specified directory.

Environment variables (which must start with $ a la the
shell) are replaced with their current value.

- 7-

UA(4) (AT&T UNIX PC only) UA(4)

In pathname specifications, the following substitutions are per­
formed:

Filecabinet
System
Floppydisk
Wastebasket
Clipboard
Parent

$HOME/Filecabinet (or / if $HOME = /)

/
/mnt
$LOGDIR/Wastebasket
$LOGDIR/Clipboard

HOME and LOGDIR are the environment variables for the home
directory and the login directory. They are the same in all cases
except for the superuser, whose home directory is /, and whose
login directory is the login directory of some selected user.

FM and UA, in spite of the description given above, don't actu­
ally create any new processes. In order to minimize the drain on
system resources (primarily swap space), these commands merely
create a new window with the appropriate display. The user
agent knows about multiple windows, and responds to commands
from any of the windows that it owns.

The windows created via UA and FM commands normally last
until they are explicitly closed by the user. The -e option can be
used on both these commands to create ephemeral windows.
These windows are automatically closed after any action is taken
on any of their objects. This option is useful in reducing "window
clutter."

EXEC and SH (and all of their variations) require complete path­
name specifications_

UA searches in the /usr /libJua directory for the menu objects
file, and then in the login directory. If the file is found in both
places, then the two files are merged to form a single menu.

In the case of an action specification for Create, %0 refers to the
name entered by the user in response to a prompt, and not to any
preselected object.

Environment Variables
The user agent maintains the following environment variables and
passes them on to all applications that it invokes:

SHELL Path of default shell (initially /binJsh)
EDIT Path of default editor (initially Jbin/ed)
LOGDIR

Path of login directory

In expert mode, the user can alter the environment variables
SHELL and EDIT, using the user agent preferences form.

The user agent reads the values of its environment variables from
the Environment files. The user agent Preferences form edits
the Environment file in the login directory when a change is
made.

SEE ALSO
uaupd(l), phone(7).

- 8-

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such
commands as who(l), write (1), and log£n(lM), have the following
structure as defined by <utmp.h>:

#define UTMP _FILE "/etc/utmp"
define WTMP _FILE "/etc/wtmp"
#define ut_name ut_user

struct utmp {
char
char

};

char

short
short
struct

short

short
} ut_exit;

ut_user[8];
ut_id[4];

ut_line[12J;

ut_pid;
ut_type;
exit_status {

e_termination;

/ * Definitions for ut_type * /
#define EMPTY 0
#define RUNJNL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INITYROCESS 5

#define LOGIN_PROCESS 6

7
8
9

1* User login name * /
1* /etc/inittab id * /
/* (usually line #) * /
1* device name * /
1* (console, lnxx) * /
/* process id * /
/* type of entry * /

/* Process termination * /
1* status * /
1* Process exit status * /
1* The exit status of a * /
1* process * /
1* marked as * /
/* DEAD_PROCESS. * /
1* time entry was made * /

1* Process spawned * /
1* by "init" * /
/* A "getty" process * /
/* waiting for login * /
1* A user process * / #define USER_PROCESS

#define DEAD_PROCESS
#define ACCOUNTING
#define UTMAXTYPE ACCOUNTING /* Largest legal value * /

/* of ut_type * /

- 1 -

UTMP(4) UTMP(4)

FILES

/* Special strings or formats used in the "ut_line" field when */
/ * accounting for something other than a process. * /
/ * No string for the ut_line field can be more than 11 chars + * /
/* a NULL in length. */
#define RUNLVL_MSG "run-Ievel %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

/usr /includ€/utmp.h
/etc/utmp
/etc/wtmp

SEE ALSO
login(IM), who(I), write(I), getut(3C).

- 2 -

INTRa (5)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRa (5)

This section describes miscellaneous facilities such as macro pack­
ages, character set tables, etc.

- 1 -

ASCII (5) ASCII (5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

FILES

Asdi is a map of the ASCII character set, giving both octal and
hexadecimal equivalents of each character, to be printed as
needed. It contains:

1000 nul 1001 sohl002 stxI003 etxl004 eotloo5 enql006 ackloo7 bel I

1010 bs lOll ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 51 I

1020 dlel021 del 1022 dc21023 dC81024 dC41025 nakl026 synl027 etbl

1080 canl081 em 1082 subl088 escl084 fs 1085 gs 1086 rs 1087 us I

1040 sp 1041 I 1042" 1043 # 1044 $ 1045 % 1046 & 1047 , I

1050 (1051) 1052 * 1058 + 1054, 1055 - 1056. 1057 / I

1060 0 1061 1 1062 2 1068 8 1064 4 1065 5 1066 6 1067 7 I

1070 8 1071 9 1072: 1078; 1074 < 1075 = 1076> 1077? I

1100 IQ 1101 A 1102 B 1108 C 1104 D 1105 E 1106 F 1107 G I

1110H 11llI 11l2J 1118K 1114L 1115M 11l6N 11170 I

1120 P 1121 Q 1122 R 1128 S 1124 T 1125 U 1126 V 1127 W I

1180 X 1181 Y 1182 Z 1188 [1184 \ 1185 J 1186' 1187 _ I

1140 , I HI a. 1142 b 1148 c 1144 d 1145 e 1146 f 1147 g I

1150 h 1151 I 1152 j 1158 k 1154 I 1155 m 1156 n 1157 0 I

1160 P 1161 q 1162 r 1168 5 1164 t 1165 u 1166 v 1167 w I

1170X 1171y 1172Z 1178 { 11741 1175} 1176- 1177 dell

00 null 01 soh

08 bs I 09 ht

10 die I II del

18 can I 19 em

20 sp I 21 I

28 (I 29)

80 0 I 81 1

88 8 I 89 9

400 I 41 A

48 H I 49 I

50 P I 51 Q

58 X I 59 Y

60 , I 61 a

68 h I 69 1

70 P I 71 q

78 x I 79 Y

lusr Ipub I ascii

02 stx I 08 etx

0& nl I Ob vt

12 dc21 18 dc8

1& sub

22 "

2& *
82 2

8& :

42 B

430 J

52 R

5& Z

62 b

6& j

72 r

730 Z

1b esc

28 #
2b +
88 8

8b ;

48 C
4b K

58 S

5b [

68 c

6b k
78 5

7b {

04 eotl 05 enql 06 aekl 07 bel I

Oc np I Od cr I Oe so I or 51 I

14 dC41 15 nakl 16 synl 17 etbl

Ie rs I Id gs I Ie rs I If us I

24 $ I 25 % I 26 & I 27 , I

2e, I 2d - I 2e. I 2f / I

84 4 I 85 5 I 86 6 I 87 7 I

8c < I 8d = I 8e > I 8f? I

44 D I 45 E I 46 F I 47 G I

4c L I 4d M I 4e N I 4 f 0 I

54 T I 55 U I 56 V I 57 W I

5e \ I 5d J I 5e I 5f I

64 d I 65 e I 66 r I 67 g I

6c I I 6d m I 6e n I 6f 0 I

74 t I 75 u I 76 v I 77 w I

7c I I 7d} I 7e - I 7f dell

- 1 -

ENVIRON(S) ENVffiON(S)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by
exec (2) when a process begins. By convention, these strings have
the form "name=value." The following names are used by various
commands:

PATH The sequence of directory prefixes that sh (1), time (1),
nice(1), nohup(l), etc., apply in searching for a file known
by an incomplete path name. The prefixes are separated
by colons (:). Login(l) sets PATH=:/bin:/usr/bin.

HOME Name of the user's login directory, set by login(1M) from
the password file passwd(4).

TERM The kind of terminal for which output is to be prepared.
This information is used by commands, such as mm(1),
which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where
xxx is standard local time zone abbreviation, n is the
difference in hours from GMT, and zzz is the abbreviation
for the daylight-saving local time zone, if any; for exam­
ple, EST5EDT.

Further names may be placed in the environment by the export
command and "name=value" arguments in sh(1), or by exec(2).
It is unwise to conflict with certain shell variables that are fre­
quently exported by .profile files: MAIL, PSi, PS2, IFS.

SEE ALSO
env(l), login(lM), sh(l), exec(2), getenv(3C), profile(4), term(5).

- 1 -

EQNCHAR(5) EQNCHAR(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [files 1 I troft' [options 1
neqn /usr/pub/eqnchar [files 1 I nroft' [options 1

DESCRIPTION

FILES

Eqnchar contains troff and nroff character definitions for con­
structing characters that are not available on the Wang Labora­
tories, Inc. C/A/T phototypesetter. These definitions are pri­
marily intended for use with eqn(l) and neqn; eqnchar contains
definitions for the following characters:

ciplus ciplus 1 1 1 1 square square

citimes citimes langle langle circle circle

wig wig rangle rangle blot blot

-wig -w't°g hbar hbar bullet bullet

> wig > wig ppd ppd prop prop

<wig <wig <-> <-+ empty empty

=wig =w'tg <=> ~> member member

star star 1< 1< nomem nomem

bigstar bigstar I> I> cupcup

=dot =dot ang ang cap cap

ors£gn ors£gn rang rang incl incl

ands£gn ands£gn Sdot 3dot subsetsubset

=del =del thl thl supset supset

oppA oppA quarter quarter !subset!subset

oppE oppE Squarter 3quarter !supset!supset

angstrom angstrom degree degree scrLscrL

==< ==<==> ==>

/usr/pub/eqnchar

SEE ALSO
eqn(1), nroff(1).

- 1 -

FCNTL (5) FCNTL (:»

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The Jentl(2) function provides for control over open files. This
include file describes requests and arguments to Jent! and
open(2).

1* Flag values accessible to open(2) and fcntl(2) *1
1* (The first three can only be set by open) *1
#define O_RDONL Y 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_NDELAY 04
#define O_APPEND 010

1* Non-blocking I/O *1
1* append (writes guaranteed *1
1* at the end) *1

#define O_DIRECT 01000001* Direct I/O *1

1* Flag values accessible only to open(2) *1
#define O_CREAT 00400 1* open with file create *1

1* (uses third open arg)* 1
#define O_TRUNC 01000 1* open with truncation *1
#define O_EXCL 02000 1* exclusive open *1

1* fcntl(2) requests *1
#define F _DUPFD 0
#define F _GETFD 1
#define F _SETFD 2
#define F _GETFL 3
define F _SETFL 4
#define F _GETLK 5
#define F _SETLK 6
#define F _SETLKW 7

1* Duplicate fildes *1
1* Get fildes flags *1
1 * Set fildes flags *1
1 * Get file flags * 1
1 * Set file flags *1
1 * Get file lock *1
1 * Set file lock *1
1 * Set file lock and wait * 1

1 * File segment locking set data type ...,. information passed
to system by user * 1

Ltype;
I_whence;
I_start;

struct flock {
short
short
long
long
int

LIen; 1* len = 0 means until end of file *1
Lpid;

};

#define F _RDLCK 01
#define F _WRLCK 02
#define F _UNLCK 03

SEE ALSO
fcntl(2), open(2).

- 1 -

GREEK(S) GREEK (S)

NAME
greek - graphics for the extended TTY-37 type-box

SYNOPSIS
cat / usr / pu b / greek [I greek - Tterminal 1

DESCRIPTION

FILES

Greek gives the mapping from ASCII to the "shift-out" graphics in
effect between SO and SI on TELETYPE Model 37 terminals
equipped with a 128-character type-box. These are the default
greek characters produced by nroff. The filters of greek(1)
attempt to print them on various other terminals. The file con­
tains:

alpha a A beta f3 B gamma ry \
GAMMA r G delta {; D DELTA !:1 W
epsilon f S zeta ~ Q eta 1] N
THETA e T theta 8 0 lambda).. L
LAMBDA A E mu J1. M nu v @

xi e X pi 1[" J PI n P
rho p K sigma (J Y SIGMA ~ R
tau l' I phi <P U PHI <I> F
psi 1/J V PSI W H omega w C
OMEGA 0 Z nabla V l not
partial () 1 integral f

jusr jbinj greek

SEE ALSO
300(1), 4014(1), 450(1), greek(1), hp(1), tc(1), nroff(1).

- 1 -

MAN (5) MAN(5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rsl 1 files

DESCRIPTION
These troff macros are used to layout the format of the entries of
this manual. A skeleton entry may be found in the file
/usr/man/u_man/manO/skeleton. These macros are used by
the man(l) command.

The default page size is 8.5/1X n/l, with a 6.5"X 10/1 text area; the
-rsl option reduces these dimensions to 6/1 X gil and
4.75/1 X 8.375/1, respectively; this option (which is not effective in
nroff) also reduces the default type size from lO-point to 9-point,
and the vertical line spacing from l2-point to lO-point. The
-rV2 option may be used to set certain parameters to values
appropriate for certain Versatec printers: it sets the line length to
82 characters, the page length to 84 lines, and it inhibits underlin­
ing; this option should not be confused with the - Tvp option of
the man(l) command, which is available at some UNIX sites.

Any text argument below may be one to six "words". Double
quotes ("") may be used to include blanks in a "word". If text is
empty, the special treatment is applied to the next line that con­
tains text to be printed. For example, .1 may be used to italicize a
whole line, or .SM followed by .B to make small bold text. By
default, hyphenation is turned off for nroff, but remains on for
troff·

Type font and size are reset to default values before each para­
graph and after processing font- and size-setting macros, e.g., .1,
.RB, .SM. Tab stops are neither used nor set by any macro
except .DT and. TH.

Default units for indents in are ens. When in is omitted, the pre­
vious indent is used. This remembered indent is set to its default
value (7.2 ens in troff, 5 ens in nroff-this corresponds to 0.5/1 in
the default page size) by .TH, .P, and .RS, and restored by .RE.

.TH t 8 C n

• SH text
• SS text
• B text
• 1 text
• SM text
.RI a b

Set the title and entry heading; t is the title, 8 is the
section number, c is extra commentary, e.g., "local",
n is new' manual name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate
these two fonts for up to six arguments. Similar mac­
ros alternate between any two of roman, italic, and
bold:

.IR .RB .BR .IB .BI

- 1 -

MAN (5)

.P

• HP in
.TP in

.IP t in

.RS in

.RE k

.PM m

.DT

• PD v

MAN(5)

Begin a paragraph with normal font, point size, and
indent. .PP is a synonym for .P.
Begin paragraph with hanging indent .
Begin indented paragraph with hanging tag. The
next line that contains text to be printed is taken as
the tag. If the tag does not fit, it is printed on a
separate line.
Same as • TP in with tag t; often used to get an
indented paragraph "lithout a tag.
Increase relative indent (initially zero). Indent all
output an extra in units from the current left margin.
Return to the kth relative indent level (initially,
k=l; k=O is equivalent to k=l); if k is omitted,
return to the most recent lower indent level.
Produces proprietary markings; where m may be P
for PRIVATE, N for NOTICE, BP for BELL
LABORATORIES PROPRIETARY, or BR for
BELL LABORATORIES RESTRICTED.
Restore default tab settings (every 7.2 ens in troff, 5
ens in nroff).
Set the interparagraph distance to v vertical spaces .
If v is omitted, set the interparagraph distance to the
default value (O.4v in troff, Iv in nroff).

The following strings are defined:

*R in troff, (Reg.) in nroff.
*S Change to default type size.
*(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2
ens in troff, 5 ens in nroff).

LL Line length including IN.
PD Current interparagraph distance.

CAVEATS
In addition to the macros, strings, and number registers mentioned
above, there are defined a number of internal macros, strings, and
number registers. Except for names predefined by troff and
number registers d, m, and y, all such internal names are of the
form XA, where X is one of),], and }, and A stands for any
alphanumeric character.

If a manual entry needs to be preprocessed by cW(l), eqn(l) (or
neqn), and/or tbl(l), it must begin with a special line, causing the
man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Per­
muted Index for this Manual assume the NAME section of each
entry consists of a single line of input that has the following for­
mat:

nameL name, name ... J \- explanatory text

The macro package increases the inter-word spaces (to eliminate
ambiguity) in the SYNOPSIS section of each entry.

- 2 -

MAN(S) MAN(S)

FILES

The macro package itself uses only the roman font (so that one
can replace, for example, the bold font by the constant-width
font-see cW(l)). Of course, if the input text of an entry contains
requests for other fonts (e.g., .1, .RB, \fl), the corresponding fonts
must be mounted.

/usr /lib/tmac /tmac.an
/usr /lib/ma.cros/ cmp.[nt].[dt].an
/usr/lib/ma.cros/ucmp.[nt].an
/usr/man/[ua]_man/manO/skeleton

SEE ALSO
nroff(l).

BUGS
If the argument to .TH contains any blanks and is not enclosed
by double quotes (""), there will be bird-dropping-like things on
the output.

- 3-

MM(5) MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [files]

nroff -em [options] [files]

mmt [options] [files]

troff -mm [options] [files]

troff -em [options] [files]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide
variety of documents. It is the standard package used by the BTL
typing pools and documentation centers. The manner in which a
document is typed in and edited is essentially independent of
whether the document is to be eventually formatted at a terminal
or is to be phototypeset. See the references below for further
details.

The -mm option causes nroff and troff to use the non-compacted
version of the macro package) while the -em option results in the
use of the compacted version) thus speeding up the process of
loading the macro package.

/usr/lib/tmac/tmac.m pointer to the non-compacted
version of the package

/usr/lib/macros/mm[nt] non-compacted version of the
package

/usr/lib/macros/cmp.[nt].[dt].m compacted version of the pack­
age

/usr/lib/macros/ucmp.[nt].m initializers for the compacted
version of the package

SEE ALSO
mm(l)) nroff(1).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

- 1 -

MODEMCAP (5) (AT&T UNIX PC Only) MODEMCAP (5)

NAME
modemcap - modem capability data base

SYNOPSIS
jusr jlibjuucpjmodemcap

DESCRWTION
Modemcap is a data base describing modems, in the same manner
as termcap describes terminals. Modems described in the modem­
cap data base and connected to an RS-232 port can then be
passed commands by standard dial(3) routines.

Modems named in modemcap are identified in the L-devices file,
which is maintained by the Administration software, as follows:

ACU ttyOOO name speed

ACU defines the modem to uucp, ttyOOO is the device used,
name is the name given to the modem in the modemcap entry,
and speed is the baud rate used by the modem.

See termcap(5) for a description of the format used for modemcap
entries.

Commands

FILES

Where termcap defines terminal capabilities, modemcap defines
modem commands. The available commands are described in the
table below. See termcap(5) for an explanation of the command
types and syntax.

Name Type Description

a[a-z,O-9]
b[a-z,O-9]
c[a-z,O-9]

d[a-z,O-9]
eh
es
m[a-z,O-9]
n[a-z,O-9]
pa
ph

pp
ps
pt
pw
s[a-z,O-9]
t[a-z,O-9]
w[a-z,O-9]

str
str
str

num
str
char
num
num
char
str

str
char
str
char
str
str
char

Abort EQUAL with string as error
Abort NOT_EQUAL with string as error
Compare string to previous results of (w'
(not including terminator)
Delay num seconds
End of phone string
primary Command start character
Skip num instructions EQUAL
Skip num instructions NOT_EQUAL
Pause character (replaces [-])
Send (srt,phone#,eh). If not defined, then
no string sent
Controls modem for pulse dialing
Primary command start character
Controls modem for tone dialing
Wait character (replaces [w=])
Send (ps,str,es) if ps and es are defined
Send str
Read characters until get character
specified (nulls are ignored)

jusr jlibjuucpjmodemcap

jusr jlibjuucpjL-devices

file containing modem descrip­
tions
logical device identification file

- 1 -

MODEMCAP (5) (AT&T UNIX PC Only) MODEMCAP (5)

SEE ALSO
termcap(5), dial(3), uucp(1).

- 2 -

MPTX(S) MPTX(S)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroft' -mptx [options 1 [files 1

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for for­
matting a permuted index as produced by ptx(l). This package
does not provide any other formatting capabilities such as headers
and footers. If these or other capabilities are required, the mptx
macro package may be used in conjunction with the MM macro
package. In this case, the -mptx option must be invoked after
the -mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

/usr/lib/tmac/tmac.ptx pointer to the non-compacted version
of the package

/usr /lib/macros/ptx non-compacted version of the package

SEE ALSO
mm(l), nrofI(l), ptx(l), mm(5).

- 1 -

REGEXP(S) REGEXP(S)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT < declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int step(string, expbuf)
cha.r *string, *expbuf;

DESCRIPTION
This page describes general purpose regular expression matching
routines in the form of ed(l), defined in /usr/include/regexp.h.
Programs such as ed(1), sed(1), grep(l), expr(l), etc., which per­
form regular expression matching, use this source file. In this way,
only this file need be changed to maintain regular expression com­
patibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared
before the "#include <regexp.h> " statement. These macros are
used by the compile routine.

GETC() Return the value of the next character in
the regular expression pattern. Successive
calls to GETC() should return successive
characters of the regular expression.

PEEKC()

UNGETC(c)

RETURN(pointer)

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned
by GETC()).

Cause the argument c to be returned by
the next call to GETC() (and PEEKC()).
No more that one character of pushback is
ever needed and this character is
guaranteed to be the last character read by
GETC(). The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of the
compile routine. The value of the argu­
ment pointer is a pointer to the character
after the last character of the compiled reg­
ular expression. This is useful to programs
which have memory allocation to manage.

- 1 -

REGEXP(5) REGEXP(5)

ERROR(val) This is the abnormal return from the com­
pile routine. The argument val is an error
number (see table below for meanings).
This call should never return.

ERROR
11
16
25
35

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delilniter.

41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \ { \}.
45 } expected after \.
46 First number exceeds second in \ { \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the com­
pile routine but is useful for programs that pass down different
pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input
characters or have characters in an external array can pass down a
value of ((char *) 0) for this parameter.

The next parameter expbuf is a. character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbu! is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbu! - expbuf) bytes, a call to
ERROR(50) is made.

The parameter eo! is the character which marks the end of the
regular expression. For example, in ed(1), this character is usually
aj.
Each program that includes this file must have a #define state­
ment for INIT. This definition will be placed right after the
declaration for the function compile and the opening curly brace
({). It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point to the beginning
of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Other­
wise it can be used to declare external variables that might be
used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call
to step is as follows:

step(string, expbuf)

- 2 -

REGEXP(5) REGEXP(5)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function comp£le.

The function step returns one, if the given string matches the reg­
ular expression, and zero if the expressions do not match. If there
is a match, two external character pointers are set as a side effect
to the call to step. The variable set in step is loc1. This is a
pointer to the first character that matched the regular expression.
The variable loc2, which is set by the function advance, points
the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire line,
loci will point to the first character of string and loc 2 will point
to the null at the end of string.

Step uses the external variable drcf which is set by compile if the
regular expression begins with A. If this is set then step will only
try to match the regular expression to the beginning of the string.
If more than one regular expression is to be compiled before the
first is executed the value of circf should be saved for each com­
piled expression and eircf should be set to that saved value before
each call to step.

The function advance is called from step with the same argu­
ments as step. The purpose of step is to step through the string
argument and call advance until advance returns a one indicating
a match or until the end of string is reached. If one wants to con­
strain string to the beginning of the line in all cases, step need
not be called, simply call advance.

When advance encounters a * or \ { \} sequence in the regular
expression it will advance its pointer to the string to be matched
as far as possible and will recursively call itself trying to match
the rest of the string to the rest of the regular expression. As long
as there is no match, advance will back up along the string until
it finds a match or reaches the point in the string that initially
matched the * or \ { \}. It is sometimes desirable to stop this
backing up before the initial point in the string is reached. If the
external character pointer loes is equal to the point in the string
at some time during the backing up process, advance will break
out of the loop that backs up and will return zero. This is used be
ed(l) and sed(1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like
s!y*!!g do not loop forever.

The routines ecmp and getrange are trivial and are called by the
routines previously mentioned.

EXAMPLES
The following is an example of how the regular expression macros
and calls look from grep(l):

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)

- 3 -

REGEXP(5) REGEXP (5)

FILES

#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

(--sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if(step(1inebuf, expbuf))
succeed();

/usr /include/regexp.h

SEE ALSO

BUGS

ed(l), grep(l), sed(l).

The handling of cire! is kludgy.
The routine eemp is equivalent to the Standard I/0 routine
strnemp and should be replaced by that routine.
The actual code is probably easier to understand than this manual
page.

- 4 -

STAT(5) STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

FILES

The system calls stat and /stat return data whose structure IS

defined by this include file. The encoding of the field sCm ode is
defined in this file also.

/*
* Structure of the result of stat
*/

struct stat
{

};

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
ofCt
time_t
time_t
time_t

#define S_IFMT
#define S_IFDIR
#define S_IFCHR
#define S_IFBLK
#define S_IFREG
#define S_IFIFO
#define S_ISUID
#define S_ISGID
#define S_ISVTX

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st~id;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000 /* type of file */
0040000 / * directory * /
0020000 /* character special */
0060000 / * block special * /
0100000 /* regular */
0010000 /* fifo * /
04000 /* set user id on execution */
02000 / * set group id on execution * /
01000 /* save swapped text even after * /

1* use */
#define S_IREAD 00400 /* read permission, owner * /
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, * /

/usr /include/sys/types.h
/usr /include/sys/stat.h

1* owner */

SEE ALSO
stat(2), types(5).

- 1 -

TERM (5) TERM (5)

Commands whose behavior depends on the type of terminal
should accept arguments of the form - Tterm where term is one
of the names given above; if no such argument is present, such
commands should obtain the terminal type from the environment
variable $TERM, which, in turn, should contain term.

SEE ALSO

BUGS

mm(l), nroff(l), sh(l), stty(l), tabs(l), profile(4), environ(S).

This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some­
what fitfully.

- 2 -

TERM (5) TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff, mm(1),
tabs(1)) and are maintained as part of the shell environment (see
sh(I), projile(4), and environ(5)) in the variable $TERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640

300
series)
DASljDTCjGSI 300 and others using the HyType I
printer

300-12 same, in 12-pitch mode
300s
382
300s-12
3045
33
37
40-2
40-4
4540
3270
4000a
4014
43
450
450-12
735
745
dumb

sync

hp
lp
tn1200
tn300

DASljDTCjGSI300s
DTC 382
same, in 12-pitch mode
Datamedia 3045
TELETYPE Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
TELETYPE Model 40/4
TELETYPE Model 4540
IBM Model 3270
Trendata 4000a
Tektronix 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments TI735 and TI725
Texas Instruments TI7 45
generic name for terminals that lack reverse line-feed
and other special escape sequences
generic name for synchronous TELETYPE 4540-
compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [- a-z 0-9]' make up a basic ter­
minal name. Terminal sub-models and operational modes are dis­
tinguished by suffixes beginning with a -. Names should generally
be based on original vendors, rather than local distributors. A ter­
minal acquired from one vendor should not have more than one
distinct basic name.

- 1 -

TERMCAP(5) TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
/ etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by v£(1).
Terminals are described in termcap by giving a set of capabilities
which they have, and by describing how operations are performed.
Padding requirements and initialization sequences are included in
termcap.

Entries in termcap consist of a number of ":" separated fields.
The first entry for each terminal gives the names which are known
for the terminal, separated by ((I" characters. The first name is
always 2 characters long and is used by older version 6 systems
which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbrevia­
tion for the terminal, and the last name given should be a long
name fully identifying the terminal. The second name should con­
tain no blanks; the last name may well contain blanks for reada­
bility.

Capabilities
(P) indicates padding may be specified.
(P*) indicates that padding may be based on the number of lines
affected.

Name Type Pad? Description

ae str (P) End alternate character set

al str (P*) Add new blank line

am bool Terminal has automatic margins

as str (P) Start alternate character set
bc str Backspace if not 'H
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column a to last column

CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display

ce str (P) Clear to end of line

ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen

cm str (P) Cursor motion

co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm

cv str (P) Like ch but vertical only
da bool Display may be retained above

dB num Number of millisec of bs delay needed

db bool Display may be retained below
dC num Number of millisec of cr delay needed

dc str (P*) Delete character

dF num Number of millisec of If delay needed

- 1 -

TERMCAP(6) TERMCAP(6)

dl str (P*) Delete line

dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line

dT num Number of millisec of tab delay needed

ed str End delete mode
ei str End insert mode; give "
eo str Can erase overstrikes with a blank

Ii str (P*) Hardcopy terminai page eject (deiauit AL)
he bool Hardcopy termina.l

hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print -'s

ic str (P) Insert character
if str Name of file containing is

im bool Insert mode (enter); give"

in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted

is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key

kd str Sent by terminal down arrow key

ke str Out of ''keypad transmit" mode
kh str Sent by home key

kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys

kr str Sent by terminal right arrow key

ks str Put terminal in "keypad transmit" mode

ku str Sent by terminal up arrow key

10-19 str Labels on "other" function keys

li num Number of lines on screen or page
II str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
mu str Memory unlock (turn off memory lock)

nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)

nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll
os bool Terminal overstrikes
pc str Pad character (rather than nUll)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode

sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last

te str String to end programs that use cm

- 2 -

TERMCAP(5)

ti

uc

ue
ug

ul
up

us

vb

ve
vs
xb

xn
xr
xs
xt

str

str

str
num

bool

str
str

str
str
str

bool
bool
bool

bool
bool

String to begin programs that use em

Underscore one char and move past it

End underscore mode
Number of blank chars left by us or ue

TERMCAP(5)

Terminal underlines even though it doesn't overstrike

Upline (cursor up)
Start underscore mode

Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode

Beehive (f1=escape, f2=ctri C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)

Tabs are destructive, magic so char (Teleray 1061)

Additional capabilities used by tam(3T):

Name Type Pad? Description

BE str Bold end

BO str Bold on
CI str Cursor invisible
GV str Cursor visible

DE str Dim end
DS str Dim start

EE str End every attribute

FE str Turn off SLK labels
FL str Set SLK label (printf fmt string)
KM str input key map (full pathname)
XE str Overstrike end
XS str Overstrike start

A Sample Entry
The following entry, which describes the Concept-lOO, is among
the more complex entries in the termcap file as of this writing.
(This partiCUlar Concept entry is outdated, and used as an exam­
ple only.)

C 11 c 1 001 concept 100: is= \EU\Ef\E7\E5\E8\E 1 \ENH\EK\E\200\Eo& \200: \
:al=3*\EAR:am:bs:cd= 16*\EAC:ce= 16\E~:cl=2*AL:cm= /Ea% + % + :co#80: \
: dc= 16\EAA:dl=3*\E AB:ei= \E\200\:eo:im= \EAP: in:ip= 16*:124:mi:nd= \E=: \

:se= \Ed\Ee:so= \ED\EE:a=8\ t:ul:up= \E; :vb= \Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last
character of a line, and empty fields may be included for readabil­
ity (here between the last field on a line and the first field on the
next). Capabilities in termcap are of three types: Boolean capabil­
ities which indicate that the terminal has some particular delays,
numeric capabilities, and string capabilities, which give a sequence
which can be used to perform particular terminal operations.

Types of Capabilities
All capabilities have two letter codes. For instance, the fact that
the Concept has ((automatic margins" (i.e. an automatic return
and linefeed when the end of a line is reached) is indicated by the
capability am. Hence the description of the Concept includes am.

- 3 -

TERMCAP(5) TERMCAP(5)

Numeric capabilities are followed by the character # and then the
value. Thus co, which indicates the number of columns the termi­
nal has, gives the value 80 for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence), are given by the two character code, an = and then a
string ending at the next following:. A delay in milliseconds may
appear after the = in such a capability, and padding characters
are supplied by the editor after the remainder of the string is sent
to provide this delay. The delay can be either a integer, e.g. 20,
or an integer followed by an *, i.e. 3 *. A * indicates that the
padding required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit pad­
ding required. When a * is specified, it is sometimes useful to give
a delay of the form 3.5 to specify a delay per unit to tenths of
milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \E maps to
an ESCAPE character, AX maps to a control-x for any appropriate
x, and the sequences \n \r \t \b and \r give a newline, return,
tab backspace and formfeed. Finally, characters may be given as
three octal digits after a \, and the characters A and \ may be
given as \ A and \ \. If it is necessary to place a : in a capability it
must be escaped in octal as \072. If it is necessary to place a null
character in a string capability it must be encoded as \200. The
routines which deal with termcap use C strings, and strip the high
bits of the output very late so that a \200 comes out as \000
would.

Preparing Descriptions
We now outline how to prepare descriptions of terminals.

The most effective way to prepare a terminal description is by imi­
tating the description of a similar terminal in termcap and build­
ing up a description gradually, using partial descriptions with ex
to check that they are correct. Be aware that a very unusual ter­
minal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To test a new terminal description you
can set the environment variable TERMCAP to a path name of a
file containing the description you are working on and the editor
will look there rather than in /etc/termcap. TERMCAP can
also be set to the termcap entry itself to avoid reading the file
when starting up the editor. (This only works on version 7 sys­
tems.)

Basic Capabilities
The number of columns on each line for the terminal is given by
the co numeric capability. If the terminal is a CRT, then the
number of lines on the screen is given by the Ii capability. If the
terminal wraps around to the beginning of the next line when it
reaches the right margin, then it should have the am capability.
If the terminal can clear its screen, then this is given by the cl
string capability. If the terminal can backspace, then it should
have the bs capability, unless a backspace is accomplished by a
character other than "H, in which case you should give this

- 4 -

TERMCAP(5) TERMCAP(5)

character as the be string capability. If it overstrikes (rather than
clearing a position when a character is struck over) then it should
have the os capability.

A very important point here is that the local cursor motions
encoded in termcap are undefined at the left and top edges of a
CRT terminal. The editor will never attempt to backspace around
the left edge, nor will it attempt to go up locally off the top. The
editor assumes that feeding off the bottom of the screen will cause
the screen to scroll up, and the am capability tells whether the
cursor sticks at the right edge of the screen. If the terminal has
switch selectable automatic margins, the termcap file usually
assumes that this is on, i.e., am.

These capabilities suffice to describe hardcopy and «glass-tty" ter­
minals. Thus the Model 33 Teletype is described as:

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as:

clladm31311si adm3:am:bs:cl=AZ:li#24:co#80

Cursor Addressing
Cursor addressing in the terminal is described by a em string
capability, with prz"ntf(3S)-like escapes (%x) in it. These substi­
tute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string
is thought of as being a function, then its arguments are the line
and then the column to which motion is desired, and the %
encodings have the following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds x to value, then %
% >xy if value > x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16
%D Reverse coding (x-2

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&aI2e03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row
and column are printed as two digits. Thus its em capability is
em=6\E&%r%2e%2Y. The Microterm ACT-IV needs the
current row and column sent preceded by a AT, with the row and
column simply encoded in binary, em=,A'T%.%. Terminals
which use % need to be able to backspace the cursor (bs or be),
and to move the cursor up one line on the screen (up, introduced

- 5 -

TERMCAP(5) TERMCAP(5)

below). This is necessary because it is not always safe to transmit
\t, \n D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus cm=\E=%+ %+ .

Cursor Motions
If the terminal can move the cursor one position to the right, leav­
ing the character at the current position unchanged, then this
sequence should be given as nd (non-oPRt.ructive space). If it can
move the cursor up a line on the screen in the same column; this
should be given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left corner of
screen) then this can be given as ho; similarly a fast way of get­
ting to the lower left hand corner can be given as II; this may
involve going up with up from the home position, but the editor
will never do this itself (unless II does) because it makes no
assumption about the effect of moving up from the home position.

Area Clears
If the terminal can clear from the current position to the end of
the line, leaving the cursor where it is, this should be given as ceo
If the terminal can clear from the current position to the end of
the display, then this should be given as cd. The editor only uses
cd from the first column of a line.

Insert/Delete Line
If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the
first position of a line. The cursor must then apppa.r on the newly
blank line. If the terminal can delete the line which the cursor is
on, then this should be given as dl; this is done only from the first
position on the line to be deleted. If the terminal can scroll the
screen backwards, then this can be given as sb, but just al
suffices. If the terminal can retain display memory above then the
da capability should be given; if display memory can be retained
below then db should be given. These let the editor understand
that deleting a line on the screen may bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap.
The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end
of the line rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either eliminated,
or expanded to two untyped blanks. You can find out which kind
of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local cursor
motions (not spaces) between the "abc" and the "def." Then posi­
tion the cursor before the "apc" and put the terminal in insert
mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does
not distinguish between blanks and untyped positions. If the

- 6-

TERMCAP(5) TERMCAP(5)

"abcll shifts over to the "def)) which then move together around
the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability
in, which stands for "insert null.)) If you terminal does something
different and unusual then you may have to modify the editor to
get it to use the insert mode your terminal defines. We have seen
no terminals which have an insert mode not falling into one of
these two classes.

The editor can handle both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as im the sequence to get into
insert mode, or give it an empty value if your terminal uses a
sequence to insert a blank position. Give as ei the sequence to
leave insert mode (give this, with an empty value also if you gave
im so). Now give as ie any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true
insert mode will not give ie; terminals which send a sequence to
open a screen position should give it here. (Insert mode is prefer­
able to the sequence to open a position on the screen if your ter­
minal has both). If post-insert padding is needed, give this as a
number of milliseconds in ip (a string option). Any other
sequence which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode, you can give the capability mi to speed up inserting in this
case. Omitting mi will affect only speed. Some terminals (not­
ably Datamedials) must not have mi because of the way their
insert mode works.

Finally, you can specify delete mode by giving dm and ed to
enter and exit delete mode, and de to delete a single character
while in delete mode.

Highlighting, Underlining, and Visible Bells
If your terminal has sequences to enter and exit standout mode
these can be given as so and se respectively. If there are several
flavors of standout mode (such as inverse video, blinking, or
underlining-half bright is not usually an acceptable "standout))
mode unless the terminal is in inverse video mode constantly), the
preferred mode is inverse video by itself. If the code to change
into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, this is accept­
able, and although it may confuse some programs slightly, it canlt
be helped.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as ue. (If the underline
code does not move the cursor to the right, give the code followed
by a nondestructive space).

- 7 -

TERMCAP(5) TERMCAP(5)

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement) then this can be given as vb; it
must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be
given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a pro­
gram that addret)::>e::; Lhe cursor, the codes to enter and exit this
mode can be given as ti and teo This arises, for example, from
terminals like the Concept with more than one page of memory.
If the terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one-screen-sized window
must be fixed into the terminal for cursor addressing to work
properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not
possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted lIP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
ks and ke. Otherwise, the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kl, kr, ku, kd, and kh
respectively. If there are function keys such as fa, fl, ... , f9, the
codes they send can be given as kO, kl, ... , kg. If these keys
have labels other than the default fa through f9, the labels can be
given as 10, II, ... , 19. If there are other keys that transmit the
same code as the terminal expects for the corresponding function,
such as clear screen, the termcap two-letter codes can be given in
the ko capability; for example, :ko=ci,lI,sf,sb:, which says that
the terminal has clear, home down, scroll down, and scroll up keys
that transmit the same thing as the ci, II, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals
which have single character arrow keys. It is obsolete but still in
use in version 2 of v£, which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr,
ku, kd, and kh. It consists of groups of two characters. In each
group, the first character is what an arrow key sends, the second
character is the corresponding v£ command. These commands are
h for kl, j for kd, k for ku, l for kr, and H for kh. For exam­
ple, the Mime would be :rna=AKrZkAXl: indicating arrow keys
left ("H), down ("K), up ("Z), and right eX). (There is no home
key on the Mime.)

Miscellaneous
If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

- 8 -

TERMCAP(5) TERMCAP(5)

If tabs on the terminal require padding, or if the terminal uses a
character other than '1 to tab, then this can be given as tao

Hazeltine terminals, which don't allow - characters to be printed,
should indicate hz. Datamedia terminals, which echo carriage
return-linefeed for carriage return and then ignore a following
linefeed, should indicate nco Early Concept terminals, which
ignore a linefeed immediately after an am wrap, should indicate
xn. If an erase-eol is required to get rid of standout (instead of
merely writing on top of it), xs should be given. Teleray termi­
nals, where tabs turn all characters moved over to blanks, should
indicate xt. Other specific terminal problems may be corrected by
adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the termi­
nal, and if, the name of a file containing long initialization strings.
These strings are expected to properly clear and then set the tabs
on the terminal, if the terminal has settable tabs. If both are
given, is will be printed before if. This is useful where if is
/usr/lib/tabset/std, but is clears the tabs first.

Similar Terminals
If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability
tc can be given with the name of the similar terminal. This capa­
bility must be last and the combined length of the two entries
must not exceed 1024 characters. Since terml£b routines search
the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left over­
ride the ones in the similar terminal. A capability can be can­
celled with xx@ where xx is the capability. For example, the
entry

hnI2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and
hence does not turn on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for
different user preferences.

TAM Capabilities
The additional capabilities provided for use with tam(3T) are all
caps to distinguish them from the standard capabilities. EE tells
TAM that the terminal uses ANSI-style character attributes, i.e.,
the strings that turn attributes on are cumulative and there is one
string, EE, that turns all attributes off. If the EE capability is
included in the termcap entry, none of the other attribute end
strings, BE, XE, and DE, need be defined.

A terminal with sg set is treated as if it has no attributes.

On a terminal with us but not so defined, so is set to us.

TAM uses attributes to show selected and unselected windows,
and menu and form cursors. On a terminal with no attributes,
the border of a selected window is drawn with "*,, and the border
of an unselected window is drawn with ".". On a terminal with

- 9 -

TERMCAP(5) TERMCAP(5)

FILES

attributes, the attributes used to draw window borders depend on
the so, BO, and DS capabilities. If only so is defined, a selected
window border is drawn using spaces with the so attribute, and
unselected window borders are drawn with ((.". If so and BO are
defined, a selected window border is drawn using spaces with the
BO attribute, and unselected window borders are drawn using
spaces with the so attribute. If so and DS are defined, a selected
window border is drawn using spaces with the so attribute, and
unselect.ed window borders are dra m using spaces with the DS
attribute.

FE and FL are used for terminals that have hardware SLK labels,
such as the b513. FL is a print! format string requiring two argu­
ments: the key number and the label string. FE turns off the
SLK labels.

KM is the full pathname of the file TAM uses to translate key­
board input sequences into their UNIX PC equivalent. By conven­
tion these mapping files are named kmap.<term£nal-name > and
are located in /usr /lib/ua.

/etc/termcap file containing terminal descriptions

SEE ALSO

BUGS

eX(l), tset(l), vi(l), more(l), tam(3T).

Ex allows only 256 characters for string capabilities. The total
length of a single entry (excluding only escaped new lines) may not
exceed 1024.

The rna, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are
not supported by any program.

- 10-

TYPES (6) TYPES (6)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system
code; some data of these types are accessible to user code:

typedef struct { int r[l]; } * physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[10];
typedef short dev _t;
typedef long ofCt;
typedef long paddr_t;
typedef long key _t;

The form daddr_t is used for disk addresses except in an i-node on
disk, see /8(4). Times are encoded in seconds since 00:00:00 GMT,
January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginning of a
file. The labeCt variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

- 1 -

VARARGS(6) VARARGS (6)

NAME
varargs - handle variable argument list

SYNOPSIS
#include < varargs.h >
v a_a list

va_del

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argu­
ment lists [such as printf(3S)] but do not use varargs are
inherently nonportable, as different machines use different
argument-passing conventions.

The va_alist is used as the parameter list in a function header.

The va_del is a declaration for va_alz"st. No semicolon should fol­
low va_del.

The va_list is a type defined for the variable used to traverse the
list.

The va_start is called to initialize pvar to the beginning of the
list.

The va_arg will return the next argument in the list pointed to
by pvar. Type is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine to know
what type of argument is expected, as it cannot be determined at
runtime.

The va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end} are
possible.

EXAMPLE
This example is a possible implementation of execl(2).

#include <varargs.h>
#define MAXARGS 100

1* execl is called by * /
1* execl(file, arg1, arg2, •.• , (char*)O); * /

execl(va_alist)
va_dcl
{

va_list ap;
char *file'
char *arg's[MAXARGS];

- 1 -

VARARGS(:» VARARGS (:»

}

int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++J = va_arg(ap, char *))
!= (char *)0)

va_end(~p);
return execv(file, args);

SEE ALSO

NOTES

exec(2), printf(3S), vprintf(3S).

It is up to the calling routine to specify how many arguments
there are, since it is not always possible to determine this from the
stack frame. For example, execl is passed a zero pointer to signal
the end of the list. Pr£ntj can tell how many arguments are there
by the format.

It is non-portable to specify a second argument of char, short, or
float to va_arg, since arguments seen by the called function are
not char, short, or float. C converts char and short arguments to
z"nt and converts float arguments to double before passing them to
a function.

- 2 -

	0001
	0002
	001-01
	001-02
	001-03
	001-04
	001-05
	001-06
	001-07
	001-08
	001-09
	001-10
	001-11
	001-12
	001-13
	001-14
	001-15
	001-16
	001-17
	001-18
	001-19
	001-20
	002-01
	002-02
	002-03
	002-04
	002-05
	002-06
	002-07
	002-08
	002-09
	003-01
	003-02
	003-03
	003-04
	003-05
	003-06
	003-07
	003-08
	003-09
	003-10
	003-11
	003-12
	003-13
	003-14
	003-15
	003-16
	003-17
	003-18
	003-19
	003-20
	003-21
	003-22
	003-23
	003-24
	003-25
	003-26
	003-27
	003-28
	003-29
	003-30
	003-31
	003-32
	003-33
	01-001_intro
	01-002_300
	01-003
	01-004_4014
	01-005_450
	01-006_adb
	01-007
	01-008
	01-009
	01-010
	01-011
	01-012
	01-013
	01-014
	01-015
	01-016
	01-017_ar
	01-018
	01-019_as
	01-020
	01-021_asa
	01-022_async_main
	01-023_awk
	01-024
	01-025
	01-026_banner
	01-027_basename
	01-028_bc
	01-029
	01-030
	01-031_bdiff
	01-032_bfs
	01-033
	01-034
	01-035
	01-036_cal
	01-037_cat
	01-038_cb
	01-039_cc
	01-040
	01-041
	01-042_cd
	01-043_cdc
	01-044
	01-045
	01-046_cflow
	01-047
	01-048_cfont
	01-049
	01-050_chmod
	01-051_chown
	01-052_clear
	01-053_cmp
	01-054_col
	01-055
	01-056_comb
	01-057
	01-058_comm
	01-059_cp
	01-060_cpio
	01-061
	01-062
	01-063_cpp
	01-064
	01-065
	01-066_crypt
	01-067_csplit
	01-068
	01-069_cu
	01-070
	01-071
	01-072_cut
	01-073
	01-074_cw
	01-075
	01-076
	01-077
	01-078_cxref
	01-079_date
	01-080
	01-081_dc
	01-082
	01-083
	01-084_dd
	01-085
	01-086_delta
	01-087
	01-088
	01-089_deroff
	01-090_diff
	01-091
	01-092
	01-093_diff3
	01-094_diffmk
	01-095_dircmp
	01-096_du
	01-097_dump
	01-098
	01-099_echo
	01-100_ed
	01-101
	01-102
	01-103
	01-104
	01-105
	01-106
	01-107
	01-108
	01-109
	01-110_enable
	01-111_env
	01-112_eqn
	01-113
	01-114
	01-115_ex
	01-116
	01-117_expr
	01-118
	01-119_factor
	01-120_fc
	01-121_file
	01-122_find
	01-123
	01-124_get
	01-125
	01-126
	01-127
	01-128
	01-129
	01-130
	01-131_getopt
	01-132_greek
	01-133_grep
	01-134
	01-135_head
	01-136_help
	01-137_hp
	01-138
	01-139_hyphen
	01-140_id
	01-141_ipcrm
	01-142_ipcs
	01-143
	01-144
	01-145
	01-146_join
	01-147_kill
	01-148_ksh
	01-149
	01-150
	01-151
	01-152
	01-153
	01-154
	01-155
	01-156
	01-157
	01-158
	01-159
	01-160
	01-161
	01-162
	01-163
	01-164
	01-165
	01-166
	01-167
	01-168
	01-169
	01-170
	01-171
	01-172
	01-173
	01-174
	01-175
	01-176
	01-177_ld
	01-178
	01-179
	01-180_lex
	01-181
	01-182_line
	01-183_lint
	01-184
	01-185_logname
	01-186_lorder
	01-187_lp
	01-188
	01-189_lpstat
	01-190
	01-191_ls
	01-192
	01-193
	01-194_m4
	01-195
	01-196
	01-197
	01-198_mail
	01-199
	01-200_make
	01-201
	01-202
	01-203
	01-204
	01-205
	01-206
	01-207_makekey
	01-208_mesg
	01-209_message
	01-210_mkdir
	01-211_mm
	01-212
	01-213_mmt
	01-214_more
	01-215
	01-216
	01-217
	01-218_newform
	01-219
	01-220
	01-221_newgrp
	01-222_nice
	01-223_nl
	01-224
	01-225_nm
	01-226
	01-227_nohup
	01-228_nroff
	01-229
	01-230_od
	01-231_pack
	01-232
	01-233_passwd
	01-234_paste
	01-235
	01-236_path
	01-237_pr
	01-238
	01-239_prof
	01-240
	01-241_prs
	01-242
	01-243
	01-244_ps
	01-245
	01-246
	01-247_ptx
	01-248
	01-249_pwd
	01-250_regcmp
	01-251_rm
	01-252_rmdel
	01-253_sact
	01-254_sccsdiff
	01-255_scrset
	01-256_sdb
	01-257
	01-258
	01-259
	01-260
	01-261
	01-262
	01-263
	01-264
	01-265_sdiff
	01-266
	01-267_sed
	01-268
	01-269
	01-270_setprint
	01-271_sh
	01-272
	01-273
	01-274
	01-275
	01-276
	01-277
	01-278
	01-279
	01-280
	01-281_shform
	01-282
	01-283
	01-284_size
	01-285_sleep
	01-286_sort
	01-287
	01-288_spell
	01-289
	01-290_split
	01-291_strip
	01-292_stty
	01-293
	01-294
	01-295_su
	01-296_sum
	01-297_sync
	01-298_tabs
	01-299
	01-300
	01-301_tail
	01-302_tar
	01-303
	01-304_tbl
	01-305
	01-306
	01-307_tc
	01-308_tee
	01-309_test
	01-310
	01-311_time
	01-312_touch
	01-313_tr
	01-314_true
	01-315_tset
	01-316
	01-317_tsort
	01-318_tty
	01-319_uahelp
	01-320
	01-321_uaupd
	01-322_umask
	01-323_umodem
	01-324
	01-325_uname
	01-326_unget
	01-327_uniq
	01-328_units
	01-329_uucp
	01-330
	01-331_uustat
	01-332
	01-333_uuto
	01-334
	01-335_uux
	01-336
	01-337_val
	01-338
	01-339_vc
	01-340
	01-341
	01-342_vi
	01-343
	01-344
	01-345
	01-346
	01-347
	01-348
	01-349
	01-350
	01-351
	01-352
	01-353
	01-354_wait
	01-355_wc
	01-356_what
	01-357_who
	01-358
	01-359_write
	01-360_xargs
	01-361
	01-362
	01-363_yacc
	01-364
	02_001_intro
	02_002
	02_003
	02_004
	02_005
	02_006
	02_007
	02_008
	02_009
	02_010_access
	02_011_acct
	02_012_alarm
	02_013_brk
	02_014_chdir
	02_015_chmod
	02_016
	02_017_chown
	02_018_chroot
	02_019_close
	02_020_creat
	02_021
	02_022_dup
	02_023_exec
	02_024
	02_025
	02_026_exit
	02_027
	02_028_fcntl
	02_029
	02_030
	02_031_fork
	02_032
	02_033_getpid
	02_034_getuid
	02_035_ioctl
	02_036_kill
	02_037_link
	02_038_lseek
	02_039_mknod
	02_040
	02_041_mount
	02_042_msgctl
	02_043
	02_044_msgget
	02_045
	02_046_msgop
	02_047
	02_048
	02_049_nice
	02_050_open
	02_051
	02_052
	02_053_pause
	02_054_pipe
	02_055_plock
	02_056_profil
	02_057_ptrace
	02_058
	02_059
	02_060_read
	02_061_semctl
	02_062
	02_063_semget
	02_064
	02_065_semop
	02_066
	02_067
	02_068_setpgrp
	02_069_setuid
	02_070_shmctl
	02_071
	02_072_shmget
	02_073
	02_074_shmop
	02_075
	02_076_signal
	02_077
	02_078_signal
	02_079
	02_080_stat
	02_081
	02_082_stime
	02_083_sync
	02_084_syslocal
	02_085
	02_086_time
	02_087_times
	02_088_ulimit
	02_089_umask
	02_090_umount
	02_091_uname
	02_092_ulink
	02_093_ustat
	02_094_utime
	02_095_wait
	02_096
	02_097_write
	02_098
	03-001_intro
	03-002
	03-003_a64l
	03-004_abort
	03-005_abs
	03-006_assert
	03-007_atof
	03-008_bessel
	03-009_bsearch
	03-010_clock
	03-011_conv
	03-012_crypt
	03-013_ctermid
	03-014_ctime
	03-015
	03-016_ctype
	03-017_curses
	03-018
	03-019_cuserid
	03-020_dial
	03-021
	03-022_drand48
	03-023
	03-024
	03-025_ecvt
	03-026_end
	03-027_eprintf
	03-028_erf
	03-029_exp
	03-030_fclose
	03-031_ferror
	03-032_floor
	03-033_fopen
	03-034
	03-035_form
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041_fread
	03-042_frexp
	03-043_fseek
	03-044_ftw
	03-045_gamma
	03-046_getc
	03-047_getcwd
	03-048_getenv
	03-049_getgrent
	03-050
	03-051_getlogin
	03-052_getopt
	03-053
	03-054_getpass
	03-055_getpent
	03-056_getpw
	03-057_getpwent
	03-058
	03-059_gets
	03-060_getut
	03-061
	03-062_hsearch
	03-063
	03-064_hypot
	03-065_l3tol
	03-066_ldahread
	03-067_ldclose
	03-068_ldfhread
	03-069_ldlread
	03-070_ldlseek
	03-071_ldohseek
	03-072_ldopen
	03-073
	03-074_ldrseek
	03-075_ldshread
	03-076_ldsseek
	03-077_ldtbindex
	03-078_ldtbread
	03-079_ldtbseek
	03-080_lockf
	03-081
	03-082_logname
	03-083_lsearch
	03-084
	03-085_malloc
	03-086
	03-087_matherr
	03-088
	03-089
	03-090_memory
	03-091
	03-092_menu
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098_message
	03-099
	03-100_mktemp
	03-101_monitor
	03-102_nlist
	03-103_paste
	03-104
	03-105
	03-106_perror
	03-107_popen
	03-108_printf
	03-109
	03-110
	03-111_putc
	03-112
	03-113_putenv
	03-114_putpwent
	03-115_puts
	03-116_qsort
	03-117_rand
	03-118_regcmp
	03-119
	03-120_scanf
	03-121
	03-122
	03-123_setbuf
	03-124_setjmp
	03-125_sinh
	03-126_sleep
	03-127_sputl
	03-128_ssignal
	03-129_stdio
	03-130_stdipc
	03-131_string
	03-132
	03-133_strtod
	03-134_strtol
	03-135_swab
	03-136_system
	03-137_tam
	03-138
	03-139
	03-140
	03-141
	03-142
	03-143
	03-144
	03-145_tmpfile
	03-146_tmpnam
	03-147
	03-148_track
	03-149
	03-150
	03-151_trig
	03-152_tsearch
	03-153
	03-154
	03-155_ttyname
	03-156_ttyslot
	03-157_ungetc
	03-158_vprintf
	03-159
	03-160_wind
	03-161
	03-162_wrastop
	03-163
	04-001_intro
	04-002_a.out
	04-003
	04-004
	04-005
	04-006
	04-007_adf
	04-008
	04-009
	04-010
	04-011
	04-012
	04-013
	04-014
	04-015
	04-016
	04-017
	04-018
	04-019
	04-020_ar
	04-021
	04-022_checklist
	04-023_core
	04-024_cpio
	04-025_dir
	04-026_filehdr
	04-027_font
	04-028
	04-029
	04-030_fs
	04-031
	04-032
	04-033_fspec
	04-034
	04-035_gettydefs
	04-036
	04-037_group
	04-038_inittab
	04-039
	04-040
	04-041_inode
	04-042_issue
	04-043_ldfcn
	04-044
	04-045
	04-046_linenum
	04-047_master
	04-048
	04-049_mnttab
	04-050_passwd
	04-051
	04-052_phone
	04-053
	04-054
	04-055_pnch
	04-056_profile
	04-057_reloc
	04-058
	04-059
	04-060_sccsfile
	04-061
	04-062
	04-063_scnhdr
	04-064_shlib
	04-065_syms
	04-066
	04-067_ua
	04-068
	04-069
	04-070
	04-071
	04-072
	04-073
	04-074
	04-075_utmp
	04-076
	05-001_intro
	05-002_ascii
	05-003_environ
	05-004_eqnchar
	05-005_fcntl
	05-006_greek
	05-007_man
	05-008
	05-009
	05-010_mm
	05-011_modemcap
	05-012
	05-013_mptx
	05-014_regexp
	05-015
	05-016
	05-017
	05-018_stat
	05-019_term
	05-020
	05-021_termcap
	05-022
	05-023
	05-024
	05-025
	05-026
	05-027
	05-028
	05-029
	05-030
	05-031_types
	05-032_varargs
	05-033

